

by Trevor Toms

First Edition
© 1981 by Sinclair Research Limited

6 King's Parade,
Cambridge CB2 1 SN
England

CJ

0

0

FRONT COVER: Illustration by Jim Burns of Young Artists, specially commissioned by Sinclair Research

,�) Limited. {�

)

)

')

Contents

INTRODUCTION
Getting the ZX81 going
Computer systems
Genera l i sations

CHAPTER 1 The Computer as a
Calculator

1 . 1 I nteraction with the system
1 .2 Complex expressions
1 .3 Variables
1 .4 Functions

CHAPTER 2 Starting to Program
2 . 1 S imple programming
2 .2 Making p rograms re-usable
2.3 Program editing
2.4 Print formatting

CHAPTER3

3 . 1 Iteration (1)

Getting Around
(Using GOTO and
I F)

3.2 Cond itiona l expressions
3.3 More functions

CHAPTER 4 Tidying Up (Program
Design, FOR and
N EXT)

4 . 1 Program design
4 .2 Iteration (2)
4 .3 Iteration at work

CHAPTER 5 Speeding Up and
Looking Nice

5 . 1 Us ing condit ional express ion values
5 . 2 Runn ing modes
5.3 Mak ing use of the d isplay faci l it ies
5.4 The ZX pri nter

CHAPTER 6 Using the Cassette

CHAPTER 7 Subroutines
7 . 1 Making use of subroutines
7 .2 G raph plotting
7 .3 I nput expressions

CHAPTER 8 Handling Text
) Strings

8 . 1 String man ipu lation
8 .2 String representation

CHAPTER 9 Arrays
9 . 1 String arrays
9 .2 Numeric arrays

CHAPTER 10 From Theory Into
Practice

1 0 . 1 Random numbers
1 0 .2 A fu l l program (1)
1 0 .3 A fu l l program (2)
1 0 .4 A ful l program (3)

CHAPTER 1 1 A Glimpse into
Another World

1 1 . 1 I nside the ZX8 1
1 1 .2 Machine code progra mming
1 1 .3 The ZX8 1 system variables

CHAPTER 12 And Finally ...

Appendix A

Appendix B

Appendix C

A Comparison of
Different Versions
of BASIC

Common Problems
and Solutions

BASIC Command
Summary

Appendix D Report Codes

)

)

)

)

)

)

Introduction

INTRODUCTION

THE COURSE

This course is intended to teach you how to write prog rams for you r Sincla i r ZX8 1 . I t wi l l not happen
overnight, but you should have a pleasurable time learn ing.

The most important part of lea rn i ng to program is experience. For this reason, the course is l iberal ly
spr in kled with examples of smal l working programs which you can enter into you r ZX81 . It a lso conta ins
many problems for you to solve us ing your computer, and specimen answers a re g iven for you to check
you r resu lts against . Tapes are inc luded with the course, conta in ing programs which you can study to
learn certai n programming tech niques.

As you work through the cou rse, you wi l l be asked q uestions from t ime to t ime, the answers wi l l be
found on the fol lowing page, so cover them over to prevent your eyes gradual ly wandering across ! As
you wou ld expect, there is a lways more than one way of answering the questions, so the answers g iven
a re only models showing you one way that you could have gone about solving the problem . Obvious ly I
have tried to d i rect you towards answering the question in the same way that I have, so hopefu l ly you
wi l l be able to carry on to another topic qu ickly. If you r answer doesn't match mine , then don't worry,
but read my solut ion carefu l ly and see if it helps you to understand more fu l ly what the text was say ing .

Each chapter a lso i ncludes a set of exercises, which do not have solutions provided . You may l ike to
try these exercises i n order to practise the topics you have learnt.

Enough of that - let's t ry and get your computer going so that you can see what it looks l i ke.
F i rst of al l , take a look at the keyboard . You wi l l notice that each key has several d ifferent th ings

written on it . All the words above the keys a re cal led KEYWORDS. Whenever I refer to a keyword in the
text it wi l l be printed in BOLD TYPE. This means that you do not need to type the whole word out, but
j ust p ress the key with that word above it . Don't worry - the ZX8 1 knows what you are trying to do and
wi l l s pel l the whole word for you .

SETTING UP

OK, f i rst let's switch everything on . H ere 's what to do :
1 . Connect the ZX8 1 to the aerial socket of your TV using the s ing le lead suppl ied. The plugs a re

d i fferent at each end, so you can 't get it wrong(!) . One end plugs into the large socket at the side of
the ZX8 1 .

2 . Use the double lead to connect the ZX8 1 to the EAR and M I C sockets on your cassette recorder - on
the side of the ZX8 1 you wi l l see a guide to tel l you which connector goes i nto which socket.

3. If your recorder has p layback tone contro ls , then set these to maximum treble , and set the vol u m e
level t o nea rly t h e max imum.

4 . P lug the ma ins adaptor i nto the ma ins , and the jack p lug into the "9V DC IN" socket on the ZX81 and
ensure that the mai ns i s on. H ere's a d iagram to help you :

sinc:lair

ZXSI

m 11111! DU!l 11!! m Ill! DUii
l!l!H!! llH!l llHl!l 1!11 m ml m
l!!l·m 1!'1!!111! !!fl !!fl m m • •

•••••111£111!1••

0
000
= -----

5

Introduction

Now switch on the TV and turn the sound down . You ' l l probably f ind that the screen is ful l of "snow",
which means that you ' re not tuned in to the correct channel . Choose a spare channel knob on your TV,
and tune it to channel 36 (just go from one end of the tun ing to the other if you r set doesn't have any
tuning gu ides) . You shou ld notice at some point that the screen goes a "sol id" g rey colou r (even on a
colour set), with a smal l symbol in the bottom left-hand corner of the pictu re that looks l i ke 13. This
symbol is actua l ly the letter " K" in a black box . Once you 've homed in on th is symbol (from here on we' l l
ca l l t h i s symbol the CU RSOR) you can adjust the f ine tun ing, brightness and contrast to make the
picture n ice and sharp .

If you have p roblems trying to get the pictu re shown below, then refer to Chapter 1 of the Sinc la i r
Handbook (suppl ied with your ZX8 1) .

I t 's better t o u s e a spare channel knob/button , a s you can leave i t set up for the next t ime you use you r
computer.

Insert the cassette tape suppl ied with this cou rse that contains "STARTERS" (look at the index on
each tape) . Now press the "J" key (wh ich has .LOAD over it) . I nstantly, the word "LOAD" appears at the
foot of the screen ! Note also that the cursor symbol (3 has changed to IJ. This tells you that the next
key you press wi l l g ive you a s ing le letter or character just l ike a standard typewriter.

You shou ld now type :

"STARTE RS"

The " character is g iven by pressing both the S H I FT key and the P key together. You wi l l f ind it eas ier
to press the SH I FT key fi rst, then WH I LE H O L D I N G THIS KEY DOWN, press the P key. Now type the
word STARTERS just l i ke you would on a conventional typewriter. Now we need another quotes
character (remember - S H I FT and P) .

Before we go on , th is has brought up a coup le of points that a re worth d iscussing. F i rst, whenever
you want to type one of the red symbols in the top right-hand corner of each key (l ike the " character
you 've just typed), you need to p ress the S H I FT key at the same t ime. These S H I FTed symbols a re
printed in red on the keyboard . Secondly, and probably more importantly,

WHAT IF YOU MAKE A TYPING MISTAKE?

Don't worry- the ZX81 lets you correct any mistakes you might make (if you ' re anyth ing l ike me, then
you have to hunt around the keyboard to f ind each letter, and you do it a l l with just two fi ngers . . .) . Let's
suppose that you typed :

LOAD "STR

and real ise that you 've made a mistake. Look at the top right-hand key on the keyboard (the 0 key) . In red
(remember what that means?) , you ' l l see the word RU BOUT. Pressing SHIFT and 0 together wi l l make
the ZX81 rub the last character out, and it wi l l d isappear from the screen . Try it - you can always type it
back again . Press S H I FT/0 again, and the next l etter wi l l d isappea r, and so on. So if you 'd typed: LOAD
"STRTE RS", you could rub out the last six letters (inc lud ing the quotes) and type them in again . The
RU BOUT key actua l ly rubs out the character to the left of the cursor (the (3 or DI symbol) .

Let's carry o n . On you r screen you shou ld now see :

LOAD "STARTE RS"

6

)

)

)

)

)

Introduction

If you don't, then rub it out (see above) , and start aga in .
We are now about to start the ZX8 1 off, looking on the cassette tape for something cal led

"STARTE RS" . If you play the tape, it just sounds l i ke pecul iar buzzing noises, but it actual ly m a kes
sense to the ZX8 1 . Rewind the tape, p ress the PLAY button on you r recorder, and OU IC KL Y afterwards
p ress the key marked N EWLI N E on the ZX8 1 (it 's on the right-hand side) . The screen wi l l now change
com pletely, and for a few seconds it wil l look l i ke the vertical hold needs adjust ing (but don't do i t !) Then
i t wi l l go mad for a whi le (about 30 seconds) and final ly wil l come to rest with the bottom of the screen
showing :

0/0

If it goes back to looking as though the vertica l hold i s out, then the tape has gone too far, and you
should start aga i n . Refer to a section at the end of this book tit led "Common Problems and Solutions"
for more information.

You can now rewind the tape and switch the cassette recorder off, as it has served its pu rpose for the
t ime being . What you have just done is to load a computer prog ram ca l led STARTERS from cassette
tape and you can now type :

RUN

(remember : it 's printed i n bold type, so you only need to press the key with R U N above i t . Which key
is that?)

RUN is a com mand which instructs the ZX81 to start runn ing the program it has loaded . You ' l l use th is
command a lot. As a lways, whenever you want the ZX8 1 to act upon someth ing that you 've just typed,
you m ust press N EWLI N E . After a few brief f l ickers, you wi l l see :

H I T H E R E
WHAT I S YO U R NAM E ?

Enter you r f i rst name, fol lowed by N EWLI N E to tel l t h e ZX81 that the name is complete. Now you can
work you r way through the questions, entering your answers fol lowed by a N EWLI N E when the answer
is complete. If you make a m istake, use S H IFT/0 to rub out unwanted letters/characters . If the ZX81
does noth ing after you 've typed your answer, it probably means that you haven't p ressed the NEWL I N E
key ! Try aga in .

You ' l l f ind after a whi le that a message

9/9999

a ppears on the bottom of the screen . This means that the program has f in ished, a nd the ZX8 1 is wait ing
for you to run someth i ng else, o r even to run the same p rogram again (i f you want to , then type RUN
aga in) . Try giving d i fferent answers to the q uestions . You ' l l see that your ZX8 1 is actual ly checking up on
you r responses and reacti ng accord i ngly. You may get bored answering the same q uestions a l l the t ime.
In that case, answering Q U IT fol lowed by the N EWLI N E key to any of the questions wi l l stop the
p rogram from carrying on , and wi l l cause 9/9999 to be shown as mentioned above .

By now, you have had an opportun ity to see what you r ZX81 looks l i ke when it's runn ing . Not a l l
p rograms are as e lementary as the STARTERS program , and you ' l l soon f ind that you r computer is
capable of doing much more than just ask ing questions and looking at the answers.

Before we start delving into the ZX8 1 in more deta i l , th is is an appropriate point to th ink about exactly
what the ZX8 1 i s .

THE ZX81 IN CONTEXT

The ZX8 1 is a computer, l i ke the many others that assist businesses, a rmed forces, pol ice, gas and
electr ic ity boa rds and even the DVLC at Swansea . So what makes the ZX8 1 d ifferent from a l l these?
Why can't the pol ice use a ZX8 1 to contro l their cri m i na l records? There a re several reasons why
d ifferent computers can and can not be used in certa in environments, so let's f i rst see what a computer
comprises.

7

Introduction

(al The central processor
The centra l processor itself can be extremely smal l - the central processor i ns ide you r ZX81 wi l l f it
comfortably onto the t ip of a f inger. but since we humans can not easily handle someth ing so smal l , it
needs to be packaged in a casing that we can manipu late. The ZX81 contains the Z80 central p rocessor
chip which is used throughout the world in many d ifferent computer systems. The Z80 ch ip is one of a
new breed cal led microprocessors. they a re rapidly f ind ing uses in a l l wa lks of l ife - TV games. washing
mach ines, l ift contro l mechanisms. to name but a few. But not a l l central processors a re so smal l .
Mainframes (so ca l l ed because of their size) can occupy a room. but they can a lso perform their
" instructions" many times faster than the ZX81 and can perform many i ndependent tasks
s imu ltaneously. A typical mainframe computer (central logic portion) can cost from £50,000-£1 00, 000 !

(bl Memory
The computer on its own is useless - it needs " instructions" to d rive it . This is where "memory" comes
in - the instructions a re stored in a memory which the computer can constantly look at to see what it is
to do next.

The ZX8 1 conta ins two types of memory - ROM and RAM . The ROM is used to a llow you to "talk" to
the ZX81 us ing the touch keys, and for the ZX8 1 to "ta l k" to you using the television screen . It also acts
as a "translator" , converting the words and symbols that make sense to you i nto symbols that the Z80
ch ip can understand . The RAM is used to hold everyth ing that you ask the ZX81 to do - any calcu lations
performed, and instructions you ask it to obey - all these a re put into the ZX81 RAM .

Memory is meas u red in " K" un its (this wi l l be expla ined later i n the course) . the ZX81 contains SK of
ROM and 1 K of RAM - i .e . it conta ins eight t imes more ROM than RAM.

(cl Backing store
Backing store (or storage) is another piece of jargon. Backing store is used to hold i nstructions arid data
that is not requ i red in the computer's memory for the time being. The actual types of backing store vary
cons iderably. The ZX8 1 uses a domestic cassette recorder, as you have seen when you asked the ZX8 1
to LOAD the " STARTERS" p rog ram .

You can probably appreciate that cassette recorders a re s low. and i t wou ldn ' t su it the pol ice to keep
searching through C90 tapes looking for deta i l s of a known c rim ina l ! Mainframes use disk packs to hold
large volumes of information . any piece of which can be obtained by the computer i n less than a
hundredth of a second . These d isk packs can hold u p to 200, 000 K of i nformation - compare that with
the 1 K RAM inside the ZX8 1 ! As you become accustomed to the amount of i nformation you can hold i n
a ZX8 1 with or without the 1 6K RAM pack. you may l i ke t o th ink of these sizes again . and try t o consider
why the pol ice could not even start to use a ZX8 1 . Obviously cost has a great deal to do with the quantity
and speed of access. A mainframe disk d rive un it can cost in the reg ion of £20,000 and must be kept in
an a i r-conditioned room to avoid dust particles ru in ing the f inely engineered mechanisms.

More recently, floppy disk drives have been introduced . As the name imp l ies. the d isks a re flexible.
and a re qu ite su ited to the " hosti le" envi ronment of a house or office. They a re m uch more in l ine with
m icrocomputers. as they cost between £200 and £500, can store up to 500K of information on a disk.
and a re fast enough for smal l computer systems. These d isks can usua l ly retrieve i nformation with in
half-a-second . As a comparison. the t ime taken to load the "STARTERS" p rogram from a floppy disk
would be a round 2-5 seconds instead of 1 -2 minutes from cassette tape.

Remember that j ust as you can change the cassette in you r recorder. so can d isks be changed i n d isk
d rive un its to g ive more storage space. A d isk pack for mainframes costs (rough ly) £80-£1 00, whi le a
floppy d isk costs about £5-£ 1 0 . Cassettes of a reasonable q ua l ity cost £ 1 each.

(dl The keyboard and display unit
Now we've got a central processor. memory and backing store. But we still need to be able to operate
the computer. or to be able to d i rect it some vvay. It is usual ly control led from a keyboard, which
invariably looks m uch l i ke a standard typewriter with a few extra keys on it . The ZX8 1 also uses a
keyboard, a lthough it does not have conventional "push keys" , but has instead a series of pressure
sensitive pads. They a re la id out in the same form as a typewriter. however.

You need to see what you ' re typing - it wou ld be pointless otherwise - and so the ZX8 1 connects to a
standard television set which "echoes" your typing. When you are happy with some typing , you press
N EWLI NE . and the ZX8 1 then acts on what you have typed . Any responses that the ZX81 needs to
make are also sent to the display unit - in this case, the TV - so that you may act on them .

Larger computer systems make use of a visual display unit, o r VDU for short. which i s l i ke a combined

8

)

)

)

)

Introduction

typewriter keyboard and TV screen rol led into one un it . You've p robably seen s imi la r un its appearin g i n
banks, a i rports, hote ls a n d even some garages. These un its are designed for fast typing a n d legibi l i ty -
and therefore cost in the region of £500-£1 000 per un it .

(e) Languages
Ear l ier above we saw how the ZX81 ROM acts l ike a "trans lator" , turning you r instructions and
com mands into a form that the Z80 can understand . The comparison can be stretched a b i t further yet.
Trans lators can understand many languages - French, Spanish, American (!) - and tu rn them into you r
own language . S imi la rly, computers can recogn ise many computer languages, each bei ng a different
way of g iving commands to the computer.

The language used by the ZX8 1 is ca l led BASIC , which stands for Beginners Al l-pu rpose Symbol ic
I nstruction Code . There a re many other com puter languages - CO BOL, FORTRAN , PASCAL, CORAL to
name but a few - each making certain aspects of computing easier, but others more complex. BAS I C
was chosen for the ZX8 1 because of its i n itial s impl icity. Don't b e fooled though, BASI C i s qu ite capable
of ho ld ing i ts own against many other languages .

(f) Printers
You wi l l probably f ind that most of the work you do with the ZX8 1 wi l l use the d isplay (TV screen) to
show resu lts . Sooner or later you may f ind it necessary to keep a typed or hand-written copy of some of
the resu lts . This is where a printer comes i n . It a l lows you to put displayed resu lts onto p rinted paper .
The ZX printer can copy the ent ire contents of the TV screen to paper in rough ly 1 2 seconds.

A mainframe uses printers that can print rough ly 2000 l ines of printed resu lts every minute! The cost
is h igh , and a typical mainframe printer costs £ 1 5,000-£20,000. Laser printers a re even faster, but I
won't frighten you with the cost !

I hope by now that you can see the ZX8 1 i n perspective . The ZX81 has brought computing with in the
reach of ordinary people, so that we can a l l see what a computer is capable of do ing , and explode some
of the myths and fea rs su rround ing them .

The d iscussion of languages above needs to be examined a bit more c losely. S ince each different
computer system is designed by d i fferent manufacturers with d ifferent markets in mind, you shou ld be
aware that no two vers ions of the same language are ever completely identica l . By "two versions" I do
not mean that your ZX8 1 wi l l d iffer from your fr iends, but that the BASI C found in a ZX81 wi l l not qu ite
be the same as that found i n other microcom puters . There a re many reasons why this is so, and many
attempts have been made to produce a Standard BAS IC . This is also true for other languages, but
no-one has succeeded yet in creating a " mach ine-independent" language.

I f you ever start to use a d ifferent type of com puter that uses BAS IC , then you can rest assu red that
you r ZX8 1 has g iven you a good grounding in the language - you wi l l have few problems i n learning the
new techniques.

Appendix A conta ins a comparison of ZX8 1 BAS I C with severa l other persona l computer system s .
Hopefu l ly th is wi l l g ive you some idea o f t h e d ifferences .

Summary
What have you learnt i n th is I ntrod uctio n ?

- how t o switch o n the ZX8 1 a n d connect a l l t h e various leads to t h e TV a n d cassette recorder.
- how to load an example program from tape.
- how to correct typing mista kes .
- how to use the SH I FT key to get the letters/characters marked in red .
- what the inverse character Cl or IJ is cal led (the cu rsor) .
- when to use the N EWLI N E key.
- what computer systems a re, what they comprise (memory, keyboard, backing store, etc) , and

where the ZX81 fits i nto th is spectru m .
I n t h e chapters that fol low, you ' l l f ind o u t what each o f t h e commands can do, a n d how you can bu i ld

u p a p rog ram by putt ing lots of com mands together in a sequence.
This i ntroduction has not posed you any questions, but al l the next chapters wi l l . Please try to answer

each q uestion honestly and on ly look at the answer (on the fol lowing page) if you ' re stuck. There's no
point in merely reading the text and looking straight at the answers, as you ' l l f i nd you rself getting qu ickly
out of your depth . I f you get REALLY stuck, then skip over the question and carry on with the next
sectio n .

F ro m now on, I ' l l abbreviate some of the ideas a s fol lows:

9

Introduction

1 . I wi l l refer to the NEWLINE key by nl, so if you were to type your name aga in , you would type, for
example,

J I M nl

2 . Whenever I want you to load a program from tape, I ' l l say :

LOAD "program name"nl

The name with in quotes wi l l be g iven to you . I ' l l a lso assume that you ' l l start the tape runn ing before
you press the NEWLI NE key, and that you watch out for the f in ish symbol . . .

(/)/(/)

Note that future programs that you load wi l l pass over several programs to reach the one that you
have asked for. This may take up to three or four minutes, so don't panic if nothing happens instantly.
Should the ZX81 get all the way to the end of the tape without the "fin ish" symbol showing, refer to
a section at the end of this course entitled "Common Problems and Solutions" . Once the program
has loaded, you should start it runn ing by typing :

RUN nl

O K then, now have a go with the ZX81 acting as a c lever calcu lator! This is the starting point i n
Chapter 1 .

1 0

)

)

,)

)

()

()

)

)

)

)

Chapter 1

The Com puter as a Calcu lato r
This chapter is d ivided into fou r major sections. The f irst section wi l l show you how you can calcu late
the a rea of a rectangle and in doing so you wi l l learn more about the cursor, d iscover what a " report
code" is, and what a "syntax error" means. You wi l l a lso use a new command, PRINT.

Section 2 shows you how to solve more complicated calcu lations using brackets, and l eads on to a
d iscussion on priorities of operators.

Section 3 wi l l show how the computer can store numbers in variables and use them aga in in n u meric
expressions. This section i ntrod uces the LET command and a method of representing n u mbers cal led
"scientific notation ' ' .

F ina l ly, section 4 covers mathematical functions avai lable o n the ZX81 .
The ZX81 can do m uch more than even a fu l l scientific ca lculator, and so this chapter conta ins some

fai rly mathe matical working. I t is important to get a good idea of what is going on even if you never use
some of the faci l i ties that the ZX8 1 can offer.

1 . 1 INTERACTION WITH THE ZX81

1 . 1 / 1 CALCULATING AN AREA

You a re probably aware of the form ula for the area of a rectangle, but just in case :

a rea of recta ngle = length x width

so that, for example, the a rea of a rectangle 6in wide by 3in long would be :

3X6= 1 8sq . i n

Fa i rly easy, a n d you probably wouldn't bother t o use a ca lcu lator. But what i f t h e d i mensions were 1 . 533
wide and 27 .9244 1 long? Would you dash for penci l and paper, or your calcu lator? On you r ca lcu lator,
you would work it out by sayi ng :

1 . 533 (display shows 1 . 533)
x (d isp lay sti l l shows 1 . 533)

27 .92441 (d isplay shows 27 .9244 1)
(d i splay shows . . . what?)

So now let's try this on the ZX8 1 .

1 . 1 /2 ARITHMETIC OPERATORS

F i rst, we need to f ind the four keys for add, subtract, mu lt iply and d ivide. We also need to find the equals
key .

The four operations are denoted by :

Operation

addit ion
subtraction
m u lt ipl ication
d ivision

Symbol

+

*

Where on keyboard

S H I FT/K
S H I FT/J
S H I FT/B
S H I FT/C

So if we want to enter 2x3 (as on a normal calcu lator), we would type :

2 *3

1 3

Chapter 1

and if we wanted 35+ 7 we would type :

35/7

1 . 1 /3 USING COMMANDS

But what about the "equals" sign? There is one on the keyboard, but this is not for giving calcu lated
results, as you will see in later sections . What do we do then? This is where the COMMANDS come in .

A command is an instruction to the ZX81 to do something. I n our case, mu ltiplying two n umbers, we
want to instruct the ZX81 to tel l us the answer. or to PRINT the answer on the TV screen . To get our
answer, then, we would type :

PRINT 1 .533*27 . 92441 (remember about BOLD FACE words? See the
Introduction if you 've forgotten .)

But nothing happens, try it.

Question
Why doesn't anyth ing happen?

14

)

)

)

)

)

)

Chapter 1

Answer
I n the Introduction, you were told that the ZX81 does not act on anything u nti l the N EWLI N E key is
pressed . If you remembered, then well done. If not, you may l ike to read that section of the I ntroduction
aga in .

Now press the N EWLI N E key. There's the answer to the calcu lation - at the top left-hand corner of
the screen! I f you ' re in doubt, check it on your calculator.

1 . 1 /4 CHECKING SYNTAX

There's another reason why nothing might have happened - that is a SYNTAX E R ROR. I t 's an awkward
word, but 'means that the ZX81 can not u nderstand what you have typed. If you 've got a syntax error,
then..i'.ou' l l notice the symbol m somewhere in the middle of the l ine that you've typed (just l ike the[3
and[! symbols we've cal led the C U RSOR) . The (§1 shows the point at which the ZX81 stops being a ble
to u nderstand you . Rub out the characters fol lowing the(§), and try aga in .

1 . 1 /5 DIRECT COMMANDS

What we have just done is to g ive the ZX81 a D I R ECT COMMAND to obey. We asked it to PRINT the
resu lt of a calculation, and that's exactly what it has done. At the bottom of the screen, you can see the
symbol

(/)/(/)

aga in . This means that the ZX81 has completed its task with no errors. J ust as you can get overf low
errors on a ca lcu lator, you can get errors on the ZX8 1 . A fu l l l ist of these can be found at the back in the
reference sections, but here we' l l g ive you an idea of what they mean.

The f irst number (in front of the /) is the report code. A report of f/J means that no error occurred , and
so we can continue. The second number need not worry us at the moment. s ince it wi l l always be f/J for
d i rect commands. We shal l come across other values for this later in the course. I f the fi rst number is
not f/J, then you can look the mean ing up in the reference section, headed "report codes" .

1 . 1 /6 ANOTHER LOOK AT THE CURSOR

Now for a bit more about the cursor.
As you 've seen in the I ntroduction, the cursor can be either 13 or[!.
The cursor is real ly a marker that indicates several d ifferent things to you :

1 . I t ind icates where the next typed letter wil l go on the screen.

2 . I t indicates what the ZX8 1 is expecting next and how it wil l interpret it.

In the second case, the letter in the box defines what you should be entering:

[3 is a .Keyword , or command. The ZX81 wil l give you the keyword above the key
that is pressed next.

II is any .better o r character.

Iii is any £unction , obtained by fi rst pressing S H I FT/N EWLI N E . The next key
pressed wi l l give the function u nderneath the keys (e.g . COS, SQR etc) . More
on this in a later section .

[!) i nd icates that the next letter/character wil l be interpreted as a §raph ics
character. Aga in , we' l l meet these later on in another chapter.

1 5

Chapter 1

Whenever you press the N EWLI N E key, the ZX8 1 checks what you have typed and if it f inds an error,
or something it can 't understand, it wi l l not accept the l ine . I nstead, it puts the SYNTAX ERROR marker
(:=)at the point on the l ine where it stops understand ing what you have entered . Rub out the wrong
letters to the right of the error and re-type them . For example if you typed

PRINT 27.3 : 6 nl

meaning 27 .3*6, then after pressing NEWLI NE, you would see

PRINT 27.3(:=): 6(!

You should use RU BOUT to remove the 2 characters on the right and re-type them . RU BOUT always
takes off the character to the left of the cursor. Suppose that you had entered a long l ine and the syntax
error was back at the beg inn ing, l ike th i s :

PRINT 27.3(3 : 6+ (44. 877 - (1 5/1 00))*38.7(!

Would it be necessary to rub out the whole of the l ine just to correct that s ingle mistake? The answer is
no. Look at the top row of keys on the keyboard . The 5 key and 8 key have red arrows on them pointing
left and right respectively. If you press SH I FT/5, the cursor wil l move to the left one position , and
S H I FT/8 wil l move it to the right. Try typing this :

PRINT 27)6*33.8 nl

You wi l l get the (3 marker in front of the) character, wh i le the cursor (! is at the rig ht-hand end of the
l ine. Press SH I FT/5 several times and the 1!11 will move back along the l i ne towards the) character. When
it is next to it, p ress S H I FT/0 (R U BOUT) . This removes the wrong) . Now press S H I FT/K and you wil l see
the + symbol being put in instead of the) . Press N EWLI N E and the corrected l ine wi l l be taken in and
the answer wi l l be given . Make good use of these "arrow" keys - they wi l l save you a lot of t ime
correcting mistakes.

Question
Name two of the three COM MANDS that you have used so far.

1 6

)

)

)

)

)

Chapter 1

Answer
You have met LOAD, PRINT and RUN.

I f you got the answer wrong, then go back and read the beginn ing of Section 1 . 1 /3 aga in .
Now you have done one ca lcu lat ion, you can probably go straight on to try others. H ere a re a selection

of sma l l problems for you to solve. The questions a re written without te l l ing you which symbols to use,
so if you've forgotten, you' l l have to re-read Section 1 . 1 /2. The answers are given for you to check. The
fi rst example is given in fu l l .

Question 1
If a shopkeeper has 1 27 boxes of chocolates in stock, and he orders a fu rther 229, how many wi l l he
have in tota l ?

1 7

Chapter 1

Answer
We need to f ind : 1 27 + 229 =? which we would enter into the ZX81 as :

PRINT 1 27 + 229 nl

Answer : 356 . (d id you really use the ZX8 1 ?)

Question 2
A mouse chews through 2 . 5gm of cheese each night in the kitchen. How much wi l l it get through in 1 05
days ? Give the answer in gram mes.

Question 3
A boy has fou nd 37 con kers. but i n his rush to get to school on t ime, 1 8 fa l l out of h is pocket. How many
are left?

Question 4
Seventeen women win a prize of £ 1 1 , 1 35 .00 in a joint competition . How m uch does each woman win?

1 8

)

)

")

)

)

Answers
2 262 .5gm . You r entry to the ZX8 1 should have read

PRINT 2 . 5* 1 05 nl

3 1 9 . You r entry shou ld have been

PRINT 37 - 1 8 nl

4 £655. This t ime you shou ld have put

PRINT 1 1 1 35/1 7 nl
or

PRINT 1 1 1 35 . 00/1 7 nl

1 .2 COMPLICATED CALCULATIONS

1 .2/ 1 SOME COMPARISONS

Chapter 1

By now you wi l l have grasped the concept beh ind the command PRINT. It can do qu ite a bit more than
just add a few n u mbers together and pr int the answer. I n fact it is one of the most powerful com mands
on the ZX81 . You a re probably th ink ing, "This is a l l very wel l, but my pocket ca lcu lator can still do lots
more th ings than that" . Some of these are :

- chain ca lcu lations together
- store resu lts in a memory and reca l l them when needed
- calcu late squares, sq uare roots, percentages
- use trigonometric functions, l i ke tan, sin, cos

Have no fea r, the ZX8 1 can do a l l of these, and more besides . Let's look at some of the points ra ised .

- chain ca lcu lat ions together.
This can be done by putting more items into the PRINT command, for example,

PRINT 27 .5*33/1 6 .8 nl

- store and reca l l from memory.
We' l l come onto this in section 1 . 3 on Va riables

- ca lcu late squares, square roots, etc.
You can use the operator ** on the keyboard to ra ise any number to the power of another, e .g .

PRINT 55**2 nl

wou ld print the va l u e of 55 squared . The ** fu nction is on the H key (using S H I FT) . So

PRINT 2 1 **3 .5 nl

g ives the va lue of 2 1 ra ised to the power 3 .5

- Use trig functions
Al l of these, plus many more, are ava i lable on the ZX8 1 . They are covered i n section 1.4.

19

Chapter 1

1 .2/2 CHAINED CALCULATIONS

Whenever you perform chained calcu lations on a calcu lator, you soon ru n up against the problem of
priority. Certain types of operators take priority over others . For example, if we wish to calcu late :

2+3 *6

on a calcu lator, the answer wou ld be obta ined by i magin ing (or putting, on some ca lcu lators) brackets
a round the two m u lt ip l ied numbers,

2 + (3*6)

Here, then, the priority of calcu lation is higher on mu lt ipl i cation . Try the example on a ca lcu lator and see
which answer you get :

2 + 3*6 (with no brackets) = ?

Calculator answer

30
20

Calculated as

(2+3)*6
2 + (3*6)

Mathematicians choose the second sol ution as preferable and state :

multiply and divide take priority over add and subtract

Question
Now try the same calcu lation on the ZX8 1 . F i rst write down how you thi n k you shou ld enter the
problem, then try to enter it and see what the result is . The "brackets" can be found by pressing SH I FT/I
and S H I FT/O.

20

)

)

)

)

Chapter 1

Answer
You should have written down :

PRINT 2+3*6 nl

I f you d id , you should have seen

I f you got any report code other than zero, you've done something wrong . If you didn't get 20 i n the top
left-hand corner, then you've probably m istyped someth ing . Go back and try aga in . If you don't
understand how we a rrived at the solution at a l l , then read sections 1 .2/1 and 1 .2/2 over again , pay ing
particu lar attention to the early stages of the PRINT com mand.

1 .2/3 BRACKETED EXPRESSIONS

I nevitab ly, you'l l come up against a formula that cannot be arranged in such a way as to be entered onto
one PRINT command . This can happen for a variety of reasons, the most l i kely at th is stage is that you
cannot get the numbers ordered to make the calculation give the correct resu lt. For example, in the case
g iven above, what wou ld you do if you wanted the answer to have given 30, so that the calcu lation is
interpreted as

(2+3)*6? (look back to section 1 . 2/2)

Wel l , the ZX8 1 is q u ite happy to be g iven b rackets a round the ca lcu lations that you want done f i rst. I n
fact, you can put b rackets with in brackets (these a re ca l led N ESTED brackets) to any depth that you
requ i re .

Let's try it . Enter t h e fol lowing:

PRINT (2+3) *6 nl

What d id you get? U n less you r typing is awful , you shou ld have seen the answer 30 .
O K, so " m u ltiply" and "divide" com e first. But what happens if you've got the same type of operator?

Suppose we had something with two divisions next to each other? Under these condit ions, the ZX8 1
a lways works from left to right a long the ca lcu lation . If you had 4/2/2, then the answer would be 1 rather
than 4 . The ZX8 1 has treated it as (4/2)/2 rather than 4/(2/2) . We' l l work through a complete va l id
ca lculat ion :

PRINT 5* (7+ (90/5)/(55-46)) nl

Taking th is a section at a t ime, we can b reak it down as fol lows :

1 . The innermost brackets a re calcu lated f i rst, i . e . (90/5) and (55 - 46) giving the two resu lts 1 8 and 9
respectively.

2 1

Chapter 1

2. The next outer set of brackets a re ca lcu lated, i . e . (7 + (1 8)/(9)) But here we must take priority into
account, and s i nce d ivision is a h igher pr iority than addition (see section 1 2/2) the division wi l l be
done f irst, g iving us the resu lt (7 + (2)) . This addition gives us our next resu lt 9 .

3. F ina l ly, the outermost ca lcu lation is done , which is 5*9 , g iving the end resu lt of 45.

* PHEVV! *

Question
What would you expect the resu lt of the fo l lowing calcu lation to be 7 Don't t ry it on the ZX8 1 unt i l after

you have written an answer down on paper.

PRINT 4* (8+4/2 - (9/3))

22

)

)

)

Chapter 1

Answer
You should have written 28 . If you got anyth ing else, then read sections 1 .2/2 onwa rds again .

T ime for a new topic.

1 .3 VARIABLES

1 .3/ 1 THE CONCEPT OF VARIABLES

On a tradit ional calcu lator, a memory is normal ly ava i lable with three of fou r keys to a l low you to store
and reca l l the nu mber conta ined in it, or add to/subtract from it, and to clear it (same as storing zero in i t) .
On the ZX8 1 , we can store a number in a "memory" by using the command LET. The big d ifference
between a ca lculator and you r ZX8 1 is that the ZX8 1 can have as many of these " memories" as you
need !

We can identify a "memory" by a s ing le letter, such as D , or X. Just l i ke algebra , we can put any va lue

) i nto these variables (or memories) . I n algebra we would say,

)

Find the va lue of : 4y+3 when y= 2 .

T h e im portant part here i s "when y = 2 " . This could b e done o n the ZX8 1 by stati n g :

LET Y = 2 n l
PRINT 4*Y+3 nl

You should notice the fol lowing poi nts -

1 . We have done th is in two stages The fi rst stage was to put a va lue to the "memory" we have ca l led
Y, and the second was to pri nt the resu lt of an equation us ing Y .

2 . The ZX8 1 wi l l remember the value of Y from the fi rst stage to the second. I t has been put away for
later use.

Now try typing those two l ines on your ZX81 . You ' l l f ind the com mand LET on the " L" key. What
answer do you get ? I f you get a report code 2/0 on the bottom of the screen instead of 0/0, then it
means you 've mis-typed someth ing . Try again .

We ca l l Y a variable rather than a "memory", beca use it ca n have any nu mber va lue . As you've seen in
the I nt roduction, the word "memory" has a s l ightly d ifferent meaning in the computer wor ld , so we wi l l
stop using the word "memory" as of now.

Question
How many variables do you th ink the ZX8 1 can hold at the moment?

23

Chapter 1

Answer
26 variables. since there a re 26 letters of the a lphabet, and so far we have said that a variable can only be
identified by a s ingle letter. Read on for further information on variable names.

1 .3/2 VARIABLE NAMES

We can ca l l a variable not by just a s ingle letter. but by a group of letters of any length we l i ke . So some
val id variable names would be

y
HGTYYC
FRED
TRY2
TE E42

and so on .

The last two examples show that numbers can be used as part of the name of a variable . As long as the
name starts with a letter. the rest of the name can be any mixtu re of letters or numbers . You can even
put spaces in if you l ike, just to make the names easier to read ! For example :

DOLLS EYES AND F I S H HOOKS
CAPN PU GWASH
TI M E 4 BED

are a l l su itable names, whereas

4TEE2
WYNOT?
F ESTER BESTER-TESTE R

a re not su itable s ince they either start with a number, o r contain characters other than letters or
numbers (? and-) .

Question
By now. a few min utes wi l l have passed s ince you typed the com mand "LET Y = 2" into the ZX81 . Let's
check to see if it's sti l l there . What would you type to see if Y is sti l l holding the number 2?

24

)

)

)

)

Chapter 1

Answer
PRINT Y nl

If you got the correct answer. then you can skip to section 1 .3/3 .
The com mand PRINT lets us look at the resu lt of any calcu lation or equation . So if you were asked in

a lgebra to solve

What is the va lue of y when y=2?

you shou ld have no trouble at a l l . That is exactly what we have done when we asked you to check i f the
variable Y was sti l l hold ing the number 2 . You have effectively typed these two commands :

LET Y=2 nl
PRINT Y nl

Try read ing sections 1 .3/ 1 and 1 .3/2 over again .

1 .3/3 ALTERING VARIABLE VALUES

You could wait a l l day - even longer - and whenever you tried, printing Y would sti l l g ive you the answer
2. This can change in a nu mber of ways . One way is to switch the ZX81 off. A bit d rastic, but
n evertheless. it works. Va riable Y would be lost completely, and if you typed PRINT Y nl , you would see

2/0

at the bottom of the screen . This report (remember that the report code is the fi rst of the two) means
that the variable has not been found . You have not g iven i t any va lue as yet .

Another way i s to a lter the value of Y. You can do this by another LET command, thu s :

LET Y=99 n l

a n d now if w e print Y , we' l l see t h e number 99.
In the last section , you saw that a variable name could be a group of letters, not just a single letter .

Th is means that you can make you r variables have names that give an ind ication of their meanings, l i ke :

LET M I LK P R I C E =20 nl
or

LET QUANTITY= 1 0 .30 nl
or

LET B R EAD P R I C E =42 nl

Type those few in , and then PRINT them. You ' l l notice that they don 't a lter even though you 've
entered more variables in between . The spaces in the names are cosmetic on ly - if you miss one out
when you type them in . the ZX8 1 wi l l st i l l know what you mean .

N ow you know how to store some numbers inside the ZX8 1 , we' l l show you how m uch more you can
do with them. The command LET does not just a l low you to store numbers in variables, but a lso al lows
you to state that one variable is given the value of another. To give you an example of this, we could say -

LET Y= QUANTITY nl

and the variable Y would be g iven the same number that QUANTITY is ho ld ing .

Question
What number is variable Y now hold ing ?

25

Chapter 1

Answer
1 0 .30.

You could check this by entering :

LET Y = OUANTITY nl
PRINT Y nl
PRINT QUANTITY nl

Read section 1 .3/3 again i f you got i t wrong .

1 .3/4 NUMERICAL EXPRESSIONS

Now comes the real fun . You may have noticed that the command LET has two parts to it - a variable
name fol lowed by an equals sign, which g ives the name of the variable that we want to a lter in some
way, and something fol lowing the equals s ign which g ives the va lue that we want the fi rst variable to be
given . This second part of the LET command is cal led .

a numerical expression

You ' l l meet th is phrase a lot, so lets exp la in what it means by g iving you more insight into the LET
command.

This "second part", or numerical express ion, that fol lows the equals sign can be a mixtu re of variables
and arithmetical fu nctions (add, subtract, mu ltiply, etc) , so that the "fi rst part" can be g iven a l most any
va lue we please. For example,

LET Y= M I LK P R I C E *2 nl

is qu ite acceptable and wou ld set Y to the va lue 40, since M I LK P R I C E is hold ing the number 20, and
(20*2) is 40.

Question
Assuming M I LK P R I C E sti l l holds 20, and B R EAD PR ICE st i l l holds 42, write down what you think Y
would hold after the command :

LET Y= M I LK P R I C E + B READ PR ICE nl

You e r.in set th is up on the ZX8 1 by typing

LET M I LK P R I C E =20 nl
LET BR EAD P R I C E = 42 nl
LET Y= M I LK P R I C E + B R EAD P R I C E nl

Write you r answer down fi rst, then enter

PRINT Y nl

26

()

)

)

)

)

Chapter 1

Answer
Did you write down 62? If so, then wel l done. Carry on with the next section. If not, then maybe w hat
fol lows wi l l help a l itt le.

We have a l ready seen h ow we can use the PRINT command to give the results of various prob lems
i nvolving mixtures of numbers and arith metical fu nctions (add, subtract, etc) . In exactly the same way,
we can put this resu lt into a variable for later use with the LET command. If we try :

PRINT 20+42 nl

we get the answer 62 . S im i la rly, if we try :

PRINT M I LK PR I C E + B R EAD PR ICE nl

then we a lso get the answer 62, since we have previously a l located M I LK P R I C E and B R EAD P R I C E
with the commands :

LET M I LK P R I CE=20 nl
LET B R EAD P R I C E =42 nl

What we have now done is to go one stage further and put this resu lt into va riable Y, by statin g :

LET Y= M I LK PR I C E + B R EAD P R I C E n l

1 .3/5 MORE EXPRESSIONS

We can now define "a numerica l expression" as any combination of numbers, numeric variables, a nd
a ri thmetical fu nctions wh ich g ive a va lue .

Here are some val id numerical expressions:

1 .3/6

M I LK P R I C E*7
4 .3+8/2
(27+3) *9
(27 + M I LK P R ICE) *9
(B R EAD P R I C E + M I LK P R I C E)*OUANTITY

SCIENTIFIC NOTATION

The ZX81 is qu ite at home us ing scientific notation (or exponential notation) to represent number va l ues.
I f you ' re un interested in th is form then you can skip this section, but there are occasions when the ZX81
may give you a resu l t in th is form, so be sure you know that it can happen!

This type of notation means that the ZX81 can handle massive numbers and mi nute numbers with
ease, giving you a g reat deal of flexibi l ity. How does it work? Instead of entering a number as (say) 1 000,
you could enter it as :

1 E3

for example LET Y= 1 E3 n l

What does i t mean 7 The n umber fol lowi ng t h e letter E (wh ich stands for Exponent) g ives t h e numbe r of
decimal p laces to sh ift the number in front of the E . If the second number is positive, then you sh ift the
first number left. I f the second number is negative, you sh ift to the right. Here a re a few examples :

1 E3
2 . 5 E - 2
5 . 1 223E8

1 000
0 . 025
51 2230000

(shift 1 left 3 t imes)
(sh ift 2 . 5 right twice)
(sh ift 5 . 1 223 left 8 t imes)

Got the idea? You can type in a number using th is form at any time you like. The ZX8 1 wi l l know what
you mean.

27

Chapter 1

Question
This question has two parts - try to answer both before you look at the next page.

28

(a) Write down what you th ink the result of these commands wi l l be:

LET R U BY= 1 2 nl
LET R U BY = R U BY+4 nl
PRINT R U BY nl

That second l ine may have got you guessing ! You can type it in and try i t to check your answer.

(b) G ive another way of writing these nu mbers :

6 .4E3
1 .4E-3
1 055
0 .075

)

)

)

)

)

)

Chapter 1

Answer
(a) The answer is 1 6 .

You r ZX81 is clever enough to rea l ise that you were trying to use the same variable, and has taken
the correct value for it. The value on the right-hand side of the equals sign is a lways worked out
before the va riable on the left-hand side is a ltered . In our case, the va lue of R U BY +4 is worked
out, and as we can see, has the va lue 1 6, and then this is stored in - oh, the same place - RU BY. I t
makes no difference to the ZX81 at a l l .

(b) 6400
0 .00 1 4
1 .055E3
7 .5E - 2

How did you get on with that lot ? If part (a) gave you some trouble, then read sections 1 .3/3 and 1 .3/4
aga in .

I f part (b) was tricky, then try section 1 .3/6 once more . You can a lways type a few examples of you r
own i nto the ZX8 1 just to check that I ' m not having you on !

1 .3/7 ASSIGNING VALUES

U p unti l now we have continua l ly tal ked about "storing a value i n" a variable. This is extre mely
cumbersome to keep saying, and besides, we find cases where we can 't rea l ly fit this expression i n and
make good sense. You ' re now going to meet another p iece of jargon. When we "store a va lue" in a
va riable, we cal l it

assigning a value to a variable.

So, for instance, if we want to put the va lue 3 in a va riable cal led J I M , we would say

Ass ign the va lue 3 to the variable J I M
o r

Assign 3 to J I M

for short. This would b e entered i nto the ZX8 1 with the command :

LET J I M = 3 nl

Question
Write down which of the fol lowing two statements is true and which is fa lse :

(a) we can assign 4 to Y
(b) we can assign Y to 4

29

Chapter 1

Answer
(a) is true and (b) is fa lse .
Why?
It makes sense if we write it out in fu l l and say that:

(a) we can put the va lue 4 in a variable ca l led Y

but it doesn't make any sense to say :

(b) we can put the va lue Y in a variable ca l led 4

since we have seen that variable names a re groups of letters, and 4 is a number !
I t is true to say:

we can assign M I LK P R I C E to Y,

as this is the same as entering

LET Y= M I LK PR ICE nl

on the ZX8 1 .

Once again, it 's t ime for another topic. Now we're going to investigate more maths besides the usual
add, su btract, mu lt ip ly and divide .

1 .4 MATHEMATICAL FUNCTIONS

1 .4/1 WHEN FUNCTIONS ARE USED

Sooner or later, you ' l l need to perform some more demanding tasks on you r ZX81 . If you ' re involved in
engineering or statistics, then you may need addit ional mathematical functions to help find the solution
to a problem.

As with most scientific calcu lators, the ZX81 is equ ipped with a fu l l set of "trig" keys - SIN, CbS,
TAN etc. Let's look to see how they are used. We wi l l start by tryi ng to find the diagonal length of a
rectangle - for those u nfami l iar with the problem, we' l l be using Pythagoras' theorem to help us. This
form u la states that the length of the diagonal is equal to the square root of the s u m of the squares of
both the s ides of the rectangle. I n form u la, this is written :

D =SOR (L2 + B2) where D is the requi red length ,
L is the length of the rectangle
B is the breadth .

We've a l ready met the "square" operation - th is used the symbol * * (S H I FT/H) to raise any number
to the power of another. But what about the square root? Look at the words printed underneath the
keys on the keyboard . These are cal led functions. The fu nction we are after here is the "square root"
fu nction, and this can be found under the " H " key, labe l led SOR. How do we get at it? This requires two
actions.

1 . Press S H I FT/N EWLI N E (the N EWLI N E key has the word FUNCTION written in red on it) . You ' l l notice
that the

.
cursor changes to [ii, indicating that the next key pressed wi l l g ive the fu nction va lue of that

key, or the word printed underneath .

2. Press the appropriate key for the required fu nction.

30

)

)

)

)

Chapter 1

But don't do it yet - we need to see how they' re used in a calculation fi rst .
A mathematica l fu nction key operates on whatever fo l lows i t . So the "square root of 1 6" wou ld be

entered as:

using these keys:

SQR 1 6

SH I FT/N EWLI N E
H
1 6

to enter function mode
to get SQR fu nction
as norma l .

This va lue can b e printed , o r assigned to any variable, si nce the fu nction itself i s a numeric expression.
H ere a re a few legal examples of the SQR function :

PRINT SQR 93 .566 nl
LET K=SQR (MILK PR ICE+ B R EAD PR ICE) nl
PRINT SQR (Y* * 2) nl

Notice that the second and third examples have got brackets surrounding the items after the SQR
function. Th is forces the ZX8 1 to work out the bracketed expression f i rst, and then ca lcu late the square
root.

The last example merely prints the value of Y, as i t has fi rst calcu lated Y squared from the expression
Y**2. and then printed the square root of it - in other words, Y !

Be carefu l t o use brackets where you want the fu nction to operate o n several items. Try these two
exa mples to see why :

PRINT SQR 9 + 1 6 nl
PRINT SQR (9+ 1 6) nl

I t i s extremely important to remember that fu nctions do not affect the expression that fol lows - they
merely operate on the va lue of the expression. So if you wrote:

LET TESTER = 25
PRINT SQR TESTER

then the va riable TESTE R wi l l still hold the va lue 25 after that second com mand has been obeyed. The
SQR function has on ly had a look to see what TESTE R holds without affecting it in any way. If we
wanted to alter TESTE R , then we wou ld write :

LET TESTER=SQR TESTER

Let's go back to the orig i na l problem which was to f ind the length of the d iagonal of a recta ngle .

Question
Write down what you wou ld enter onto the ZX8 1 to f ind the length of the d iagonal of a rectangle whose
whose sides a re 4cms and 3cms?

You know how to get the square of a number, and the form ula has been given to you above, so a l l you
rea l ly need to do is t rans late that form ula into something that the ZX8 1 wil l understand , and change a l l
the symbols in the formu la to actua l numbers .

3 1

Chapter 1

Answer
The answer could be :

PRINT SOR (3**2+ 4**2) nl
or

PRINT SOR ((3**2)+ (4**2)) nl
or

PRINT SOR (9+ 1 6) nl (i f you were lazy !)

I f you got the answer wrong, try read ing section 1 .4/1 aga in .

1 .4/2 MORE FUNCTIONS

Now that you 've seen how to use the SOR function, it only needs to be said that a l l the other
mathematical fu nctions l isted below work i n a s imi lar way, but just g ive d ifferent solutions.

Please don't think that you have to learn this lot - you ' l l f ind it much more usefu l just to look and see
what there is, and later on when you get involved in more progtamming , use the reference section at
the end to give you a complete l ist of all fu nctions and commands.

Function Where on keyboard What it does

SOR H G ives square root
SIN Q Sine
cos w Cosine
TAN E Tangent
INT R Suppl ies the next lower integer.

Al l fractions a re removed e .g .
PRINT INT 27 .66 nl
would print 27 . A l l the decimal places are lost.
Note that INT - 27 .66 gives - 28 as it is the next /owerva lue

ASN A I nverse of SIN
ACS s I nverse of COS
ATN D I nverse of TAN
SGN F G ives a resu lt depending on the sign of the a rgu ment. - 1 i f

negative, 0 if zero, + 1 if positive. E .g .
PRINT SGN - 44.9 n l
would print - 1

ABS G G ives the absol ute (or mod .) va lue , thus the result is a lways
positive. E . g .
PRINT ABS 24.3 nl
and
PRINT ABS - 24.3 nl
wou ld both print 24.3

LN z Gives the natura l logarithm
EXP x Gives natura l anti-log, or exp

There is a lso one mathematical function which has no bracketed expression fol lowing it - rr (found
under the M key), which is displayed as Pl. This, when seen in a calcu lation , gives the va lue 3 . 1 41 5927 .
I n the strict mathematical sense, Pl is not a function, but a constant.

As you look down that l ist, you ' re probably wondering what on earth some of these functions a re for.
Who wants to know what the ABS va lue of a number is? Wel l , as we delve into program ming more and
more, you ' l l g radua l ly learn that the computer is rea l ly an idiot that has to be told everything. I t makes no
assumptions . U nder certa in conditions, i t may need to check that the number it is working on is positive
(for example, trying to find SOR - 1 would be rather senseless), and so we have a l ready found a need
for the ABS fu nction . You ' l l f ind more examples showing most of these functions in use later on .

32

)

)

)

)

)

)

Chapter 1

Question
Let 's su ppose that we have two variables, ca l led VARA and VAR B, which are holding two unknown
numbers. What would you enter i nto the ZX81 in order to see the integer part of the i r sum 7 Look down
that l ist of functions aga in . One of them is the clue to the answer, but you' l l need to be ca refu l when you
write it out, because we a re after the sum f i rst.

33

Chapter 1

Answer

Try it by entering :

PRINT INT (VARA+VARB) nl

LET VARA=25.4 nl
LET VAR B =3 1 .769 nl

and then the solution as g iven above. This wil l print the answer 57, since 25 .4+31 .769 gives 57 . 1 69, and
the integer part of th is is 57.

If you got the correct answer, then carry on. If not, then you ' l l need to read this section over aga in . If
you used the wrong function but otherwise got the correct answer, then don't worry, just look at that
table once again and check the answer to the problem over to get it clear in you r mind.

Summary
We have covered q u ite a lot of g round in this chapter, and you ' l l have done extremely well if you've
fol lowed it all with no rea l problems. Some of the more complex points wi l l become clearer in time as
you work th rough more a nd more examples - and there a re a lot more examples to come, both in the
text and on tape.

Irr the next chapter, we start to look at how to build up your own programs, based on some of the
ideas that you 've met so far.

Here's a l ist of the topics that we've covered in this chapter:
-· how to use the ZX81 as a ca lcu lator, and how the fou r a rithmetic operators a re used .

- what a SYNTAX E R R O R is, how it can be corrected using the cursor keys S H I FT/5 and S H I FT/8.

- what the report codes represent.

- how to use the PRINT command to d isplay ca lculated resu lts of fairly complicated expressions, and
how to make use of the different priorities g iven to operators .

- What a VARIABLE is , how it can be assigned a value using numeric expressions.

- when SCI E NTI F IC N OTATION can be used and how to interpret it .

- how we can use mathematical functions to increase the ca lculating power of the ZX8 1 .

Exercises
1 . Calcu late the area of a circle with radius 4 inches .

2. Calcu late the volume of a sphere with rad ius 4 inches .

3. Try to f ind :
(a) the largest number that the ZX81 can hold using scientific notation,
(b) the smallest n umber (positive) that the ZX81 can hold using scientific notation .

4 . Investigate what happens when you try entering numbers with more than n ine digits, or when the
result of a calcu lation exceeds nine d igits .

5. Use the fact that a 45 rpm s ing le cost 32p in 1 960 to d iscover the increase cost as a percentage (but
don't cry when you discover the answer!) .

6 . A television screen has 625 l ines which are sent 50 times per second (U K) . How many l ines are sent
in one hour?

7 . If a cheap rate long d istance call costs 9p for five minutes (when dia l led d i rect on you r own
phone . . .) , how much will a cal l lasting 37 minutes cost?

8. Roger Bannister was the fi rst person to run a mi le in just under four minutes . Approximately how
many yards did he cover each second?

34

i)

0

Chapter 2

) Startin g to Prog ra m the ZX8 1

)

)

I n this Chapter you wi l l see the beginn ings of com puter programming. The chapter is d ivided into four
major sections.

Section 1 shows how program statements a re created, and defines a computer program.
Section 2 deals with making prog rams re-usable, so that they can be used for repetitive calcu lations.

you wi l l a lso see how programs can be annotated with comments of you r own , and how to set about
u n rave l l i ng an existing program .

In section 3 you wi l l b e shown how to edit a prog ram s o that any errors can be removed.
The last section g ives some in it ia l deta i ls of print formatt ing, so that your d isp layed results can be

g iven more appea l .

2 . 1 SIMPLE PROGRAMMING

2 . 1 / 1 RESETTING TH E ZX81

The f i rst th ing we a re going to learn is how to clear out the ZX81 . It 's a bit l i ke pressing the "C" button
on a ca lcu lator, or switch ing it off and on (this also works on the ZX81 , but it is not recommended un less
there is no a lternative) . The com mand to use is

NEW nl

and a l l previous ca lcu lation resu lts, a l l va riables that have been stored, in fact everything wil l be clea red
out. Whenever you want to start someth ing fresh, use NEW f i rst.

2 . 1 /2 H OW TO STORE COMM ANDS

Let's go back to our very fi rst problem in Chapter 1 , which was to calcu late the a rea of a rectangle . What
you did there was to specify a com mand l i ke :

PRINT LENGTH * B R EADTH nl

which, if LENGTH and B R EADTH had been set up using the LET com mand, wou ld print out the
appropriate a rea . But it becomes a trif le ti resome typing these l i nes i n each t ime, and as we a l ready
know, the ZX8 1 is qu ite capable of remembering the va lue of any variables that we set up, so why can't
it remember some commands as wel l ? The answer is that it can . It can store up qu ite a lot of
commands, and then obey them when you are ready, instead of one at a t ime as we have seen so far .

You wi l l p robably say to thi s : " B ut whenever I type a com mand into the ZX8 1 , it is a lways obeyed
when I press N EWL I N E . So how can I stop it from doing th is7" The solution is to put a number in front of
the command when it is typed. Th is identifies the command un iquely, and is ca l led

a L I N E N U M B E R .

Let's look at our exam ple aga in . Try typi ng :

1 PRINT LENGTH * BR EADTH nl

You do not need to use the "space" key when you a re typing this, because the ZX81 wi l l
automatical ly space the various items out for you . Do th i s before you read on .

Someth ing qu ite unexpected has now happened . I nstead of getting some answer to a calcu lat ion ,
} you r l i ne has been taken in and put at the top of the screen ! The ZX8 1 has f i led it away for you to use

later . At th is stage, don 't worry about the symbol that has appeared in between the number 1 and the
command PfUNT. We' l l come on to this shortly.

37

Chapter 2

Of course, the command that has just been filed away requires two variables to be set up be�ore it can
calcu late the area - LEN GTH and B R EADT H . We could do that by entering two di rect commands using
LET to assign va lues to LENGTH and B R EADT H . Or, as we now know, we could save the l ines for later,
along with the PRINT commands that have a l ready been saved .

Problem
What do we do if we want a command to be saved inside the ZX81 for later?

38

I.)

:)

)

)

)

)

)

Chapter 2

Answer
The command should have a line number in front of it .

I f you r answer was wrong, then read section 2 . 1 . 2 . over again. fol lowing the examples thorough ly.

2. 1 /3 COMMAND SEQUENCING

Now we come against a real problem . I f we save two more commands i ns ide the ZX81 (i n th i s case, two
LET commands which assign val ues to LENGTH and B R EADTH) then how can the ZX81 know which
one is to be done f irst? And which one second ? Well, you may have already guessed. I t is the line
number that tells the ZX8 1 which command is to be obeyed fi rst. The lowest numbered command wi l l
be done f irst, then the next lowest, and so on .
But in our example, we cal led our l i ne number 1 , and you can't get much lower than that ! OK, so we've
made a m istake. We should have cal led i t l i ne number . . . what? If you thought " l ine n umber 3", then
you' re on the right track. We want to add two extra l i nes - two LET commands which wil l set up the
variables LENGTH and B READTH before the PRINT command is obeyed. So let 's do i t al l again . Type
these l i nes :

1 LET LENGTH = 1 2 nl
2 LET B READTH = 57 .33 nl
3 PRINT LENGTH * B R EADTH nl

You should have noticed these points :
(a) Line number 1 has been replaced with the new LET command that we've just typed i n . Remember

that for the future.
(b) All the other l i nes that we have entered have been put underneath each other at the top of the
screen.

Question
What should you do if you now rea l ise that l i ne number 2 should have read

2 LET B R EADTH = 58

What can you do about i t?

39

Chapter 2

Answer
You should type the corrected l ine in agai n . It wi l l replace the l ine of the same nu mber. Read section

2. 1 .3 . aga in if you got the wrong answer.

2 . 1 /4 DEFINITION OF A PROGRAM

Now you have th ree com mands inside you r ZX8 1 just wa iting for you to say "GO" or something. The
command that you should use, and you 've a l ready used it, is

RUN nl

Try it. After a f lash, on the screen you ' l l see the answer to the calculat ion, just as if you 'd typed those
three l i nes in as d i rect commands one at a time. The big d ifference is that those th ree l ines are sti l l there
- sitting ins ide you r ZX8 1 waiting to be ru n aga in , _and aga in , and again . . . unt i l you get bored watch ing
the same numbers come up on the screen a l l the t ime.

How do we look at our saved com mands after we've run them 7 Here is a new command for you .

LIST n l

Type i t i n . You ' l l f ind the screen shows you your saved commands aga in . I n this instance you cou ld have
just pressed N EWLI N E to get the same effect. These saved commands have a special name :

a COM PUTER PROG RAM

What you have just done is to enter a program into your ZX8 1 and run it. And this is what programming is
all about, entering commands into a computer, and runn ing them in sequence.

Question
How does the ZX8 1 know which command in a program is to be obeyed f irst?

40

)

)

)

)

)

)

Chapter 2

Answer
By looking at the l ine numbers. The lowest numbered com mand is the one that is obeyed fi rst, and so

on. Read section 2 . 1 .3 . over aga in if you got that one wrong.

2 . 2 MAKING PROGRAMS RE-USABLE

2 .2/ 1 THE INPUT COMMAND

We now know how to store program commands for later use, and how to run them, but you m ust admit
that our example is rather l i m ited i n use . I n fact it can on ly ever give you the same resu lt . I t wou l d be
n ice i t we could somehow set up those variables LEN GTH and B R EADTH each t ime we run it. But we
don't want to enter them in as program com mands each t ime, because we might just as well type the
whole th ing in as d i rect com mands. The u lt imate would be for the ZX8 1 to stop running the program and
wai t for you to type in the length and b readth, then carry on to give the solut ion.

No proble m . There is a command ca l led INPUT which does just that. I t a l lows us to assign any value
to a variable wh i le the prog ram is being run .

Let's change t h e p rogra m . I n fact, let's get th is program from one o f t h e tapes that you got with the
cou rse. Can you remember how to set the cassette recorder up and how to LOAD someth ing f rom
tape? I f not , look back to the I ntroduction . There you were talked through the loadi ng of a program cal led
" STARTERS" . Read that aga in to rem ind you rself.

Set the tape up and type

LOAD "AREA 1 " n l

When it 's loaded (you ' l l see 0/0 a t t h e bottom o f t h e screen) , you can switch t h e cassette off. B ut don ' t
type RUN at th is stage, because we want to look at the program, not see how it runs as yet.

Question
There a re two parts to th is question .

1 . How do you look at the stored program com mands? What shou ld you now enter?
2 . H ow wou ld you remove everything f rom the ZX8 1 ?

41

Chapter 2

Answer
1 . You should enter LIST nl
2. Type NEW nl
Check back over section 2. 1 . "S imp le Programm ing" if you fai led either part of that question .

These last few paragraphs have ra ised some more points that you should take note of :
(a) the progra m you a re looking at on the screen was typed by me - the author of this cou rse. And yet

there it is on your TV screen ! It was a l l kept on that cassette tape. So you ' l l be able to enter programs
once on ly and keep them a lmost forever. That ' l l come in usefu l .

(b) even though w e have stored some commands in a program, we sti l l need t o enter d i rect commands
to make the ZX8 1 do what we want it to - l i ke LOAD or LIST or RUN.

2.2/2 COMMANDS AND STATEMENTS

You wi l l gradua l ly see that there a re two d istinct types of commands. Those that a re real ly intended
for using with in a prog ram, and those that a re used to contro l what the ZX81 is to do for us next. We ca l l
those commands that a re he ld in a program "STATEMENTS", and those that control the ZX81 a re
ca l led "COMMANDS" just l ike we have been us ing up unt i l now. Some of the ZX8 1 keywords , such as
INPUT, have no rea l va lue when used as a d i rect command whi le others (l i ke RUN) are not real ly used
as statements with in a prog ram .

Back to the example program ca l led "AREA 1 " . What do you notice about the l i ne numbers? They go
up in tens rather than ones. This is for a very good reason . If, at a later date, I wanted to add some new
l ines into my program, I could type them in as, say, l ine 1 2, or l i ne 4, and the ZX8 1 , s ince it obeys the
commands in l i ne number sequence, wi l l obey my new program in the order in which I want it to . If ,
however, the l i nes were numbered 1 , 2 and 3 - as we had earl ier, then how wou ld I manage to add a
new com mand which was obeyed after l i ne 1 but before l ine 2? Wel l , I suppose you would say " Use l ine
1 .5", but u nfortunately, l i ne numbers a re only a l lowed to be whole numbers , no fractions, no negatives,
and no l i ne number zero . Th is is why I have used l ine numbers in steps of ten .

Question
Write down what you th ink the resu lt would be if you typed the fol lowing p rogram into the ZX81 and ran
it (don't enter it , as we sti l l have our example program in) :

42

1 0 LET X=5
20 LET Y= 1 0
30 LET Z=X + Y
25 LET Y=3
40 PRINT Z

)

)

)

)

)

)

)

Chapter 2

Answer
Did you spot that the l i ne numbers a re not in order? The answer that would be printed in 8. The

p rog ram when rearranged into l ine number sequence is :

1 0 LET X = 5
2 0 LET Y= 1 0
25 LET Y=3
30 LET Z=X + Y
40 PRINT Z

and so l ine 25 effectively does away with l ine 20, as Y is g iven the value 1 0 , and then immediately g iven
the va lue 3. Read section 2 . 1 "S imple Programm ing" again .

2 . 2/3 DATA E N TRY

Notice the two statements using the INPUT com mand . They specify the name of the variable that is to
be entered f rom the keyboard when the program is run .

1 0 INPUT LENGTH
20 INPUT B R EADTH

R u n the prog ram and see what happens. Type RUN nl, and the screen goes b lank, with just the cu rsor
at the bottom of the screen conta in ing the l]I symbol . This is the INPUT com mand doing its job. The
ZX8 1 is wait ing for you to type in someth ing . But we know that the program we a re run n ing is expecting
a n umber to put into the variable cal led LEN GTH . So obvious ly, we must now type in a number. Don't
forget to press N EWLI N E when you 've done it .

Now what? The screen blanks out again, and there is a notherl)-cursor at the bottom. This is for the
second INPUT command, requesting the B R EADTH variable. Enter anothe r number, fol lowed by
N EWL INE . This t ime, we get the result on the screen just l ike we have had before.

Question
How could you rewrite the fol lowing program to a l low different values to be entered when the

p rogram i s run?

1 0 LET COST =20.00
20 LET VATRATE = 0. 1 5
30 PRINT COST * VA TRATE

43

Chapter 2

Answer

1 0 INPUT COST
20 INPUT VA TRA TE
30 PRINT COST * VATRATE

In practice, you would probably l eave l ine 20 as it was , since the VAT rate only changes at infrequent
interva ls, and it would becom e t i resome to keep 'entering 0 . 1 5 each t ime.

If you r answer was wrong, then read section 2 . 2/3 again .

2. 2/4 PROGRAM ANNOTATION

You can see d rawbacks in the example p rogram "AR EA 1 " . F i rst, when the screen went blank, you had
no idea what you were supposed to be ente ring . O K, so we had just looked at the prog ram, and could
see that it was a variable cal led LENGTH that was expected. But how wou ld you know if someone else
had written the p rogram, and asked you to try it out? Obvious ly, some sort of ind ication is requi red on
the screen as the number is entered .

Secondly, in order to understand what the program was doing, we had to look at it l ine by l ine . If you
bought a p rogram from a shop, you wou ldn't be very pleased if you had to unpick it a l l l ine by l ine in order
to understand how to use it ! This second point is important.

There is a com mand cal led . . .

REM

which a l lows us to put comments (REMarks) into a program which a re ignored by the ZX8 1 . Whatever
fol lows the command REM is up to us . The ZX8 1 is just not interested. For example :

1 0 REM TH IS LI N E DOES ABSOLUTELY NOTH I N G
2 0 INPUT LENGTH

We can now put R E M statements i nto our program to let someone know qu ite a lot about how the
program runs, who wrote it and when, what a particu lar portion of the prog ram does, etc.

2.2/5 PRINTING TEXT

Reset you r cassette recorder, and now load another program:

LOAD "AR EA2"

When it is loaded, use the LIST command to have a look at it . The prog ram does exactly the same as the
program "AREA 1 " that we have studied so far, but this time it has been tidied up to make it much easier
to understand both when it is run and a lso when it is l isted .

Let's take each l ine in turn . Whenever we look at a program l ike this - l ine by l ine - we a re effectively
"looking into the future" . We are trying to understand what the program wi l l do when it is run . Always
bear this in mind when we work our way through the examples.

1 0 REM A PROG RAM TO CALCU LATE AR EAS

This l ine introd uces the prog ram . The ZX8 1 wil l ignore it because it begins with REM. It te l ls us what
the prog ra m does . Notice that the l ine is too long to fit across the screen and so the ZX8 1 has put the
word "AR EAS" on a new l ine .

20 REM REQU I R ES LENGTH AND B R EADTH

44

')

)

)

)

)

Chapter 2

Another REMark which ind icates what the program needs to get it to ru n properly. This l ine is a lso too
long. I (the author) have had to add extra spaces between the words so that the word " B R EADTH" was
not sp l it halfway over two l ines on the screen.

30 PRINT " E NTER LENGTH "

This is someth ing new. The ZX81 treats the letters in quotes as text, and wi l l print it on the screen for
us. I t is not restricted to just printing numbers. I f we want any letters/characters printed, we just put
q uotes (") a round them.

40 INPUT LENGTH

As we had before. The ZX81 wi l l stop and wait for a number to be typed in from the keyboard.

50 PRINT " E NTER B R EADTH "

This is some more text that tel ls us that we should enter a nu mber representing the breadth of the
rectangle.

60 INPUT B R EADTH

The same as the orig ina l prog ram .

7 0 PRINT "TH E AREA IS"

Th is text introduces the resu lt.

80 PRINT LENGTH * B R EADTH

Now we print the resu lt . What happens when "AR EA2" is run? Do it and see for yourself.
Did you find it easier to use? I t would certa in ly be easier for you if you had never seen the prog ram

before. Let us mention some points that are worth remembering :

1 . When the prog ram is run, each PRINT statement (l i nes 30, 50, 70 and 80) starts a new l ine on the
screen, leavi ng the others i ntact.

2. When you enter the LENGTH variable you cannot see it any more, so if you forget what you type,
you ' re in trouble .

2 . 2/6 A PROGRAM FOR YOU TO WRITE

Question
Using the example in the previous question, write out a new version of the VAT program which

conta ins some idea about what it does, and gives the operator (i .e . you) prompts for the requ i red
variab les . The program was :

1 0 INPUT COST
20 LET VATRATE=0 . 1 5
30 PRINT COST * VATRATE

The answer printed is the amount of VAT to be added to the cost. Fi rst enter NEW to clear out the o ld
p rogra m, then try entering you r program to see if it rea l ly works.

45

Chapter 2

Answer
You r answer may not match this one exactly, but should at least fol low the genera l outl ine .

1 0 REM PROG RAM TO CALCU LATE VAT
20 REM ASKS FOR COST TO BE E NTERED
30 PRINT " E NTER COST"
40 INPUT COST
50 PRINT "VAT AMOU NT IS"
60 PRINT COST * 0 . 1 5

You may notice that the l ine LET VATRATE = 0. 1 5 has d isappeared . It has become m ixed in with the new
l ine number 60 as a d i rect number. Did your program work? If it d id , then congratu lations. Carry on with
section 2 .3 .

We have covered qu ite a lot in th is chapter so far , and maybe you a re rush ing ahead a b i t too fast .
Where d id you r prog ram go wrong? Below is a l ist of things that may have caused you problems. Refer
back to the sections mentioned .
(a) You d idn 't understand what REM d id . See section 2 . 2/4.

(b) Th is bus iness of "text" is confusing . Read section 2 .2/5 aga in .

(c) Why use INPUT? Reading section 2 . 2/3 to 2 .2/5 wi l l g ive you some more reasons.

(d) You got a report code at the foot of the screen when the program was run. Look at the reference
section titled " R eport codes" at the back of this cou rse to see what it means. Try correcting the
error by typing the corrected l ine number in aga in . I t wil l replace the incorrect l ine .

(e) You got a syntax error when you were entering a l ine , and you cou ldn ' t get past it . Look back at the
answer to· see how each l i ne was formed . Check it against yours, and you ' l l p robably see why the
ZX81 won 't accept you r l ine. Don't forget that the m symbol ind icates where the ZX81 thinks the
error is.

2.3 PROGRAM EDITING

2 .3/ 1 FULL CURSOR CONTROL

Now we want to th ink about someth ing else. Let's load in that program "AR EA2" aga in

Reset the tape and LOAD "AR EA2"

What wou ld we do i f one of the l i nes in the prog ram was wrong ? Suppose that l i ne number 30 should
say

30 PRINT "TYPE LENGTH "

instead of ENTER LENGTH. This may seem a trivial change, but it h igh l ights a big problem, especia l ly
when programs have very long l i nes in them . We cou ld obviously type the whole l i ne in aga in , but this
seems a bit of a shame - nearly all the l ine is correct except for the few letters we want to change.

Look at the " 1 " key (top left) . This key has written on it :

ED IT (SH I FT/1)

The edit key a l lows us to alter any part of a l i ne that we wish, and put it back aga in i nside the ZX81 . The
rest of the l i ne remains unaffected . Before we can use it, we must obviously let the ZX81 know which
l ine we warit to alter (or edit) . By now you 've probably noticed the symbol &I alongside the l ine nu mber
of one of the l i nes i n a prog ra m . Th is is ca l led the program cursor. It i nd icates the l ine n u mber that the
ZX81 wou ld a lter if the ED IT key were to be p ressed now.

46

)

)

)

)

)

Chapter 2

If we want to move the program cursor to a d ifferent l i ne, we can do it in two or three ways. There a re
fou r keys on the top row of the keyboard marked with arrows (SH I FT/5, SH I FT/6, SH I FT/7 and S H I FT/8) -
you 've a l ready seen how to use two of these. The two with arrows pointing up and down, move the
program cursor to the l ine above or below respectively. At the moment, since we have just loaded
"AREA2" again , the program cursor wi l l be resti ng on l ine number 1 0 . Try pressing the "down" arrow
key (SH I FT/6} and see what happens. Try aga in . You wi l l notice that each t ime you press the key, the El
marker moves down to the next l i ne . Now try the "up" a rrow key. Getting the idea? The prog ram cursor
can also be moved directly to a l ine number by typing :

LIST nnnn nl

. . . where nnnn is any l ine number that yuo wish. We've used this command before. The d ifference
here is that we have also included a l i ne number. So if we just say LIST, this means "show the prog ram
starting with the fi rst l i ne number" .

Move the p rogram cursor to point to l i ne number 30 . We' re about to change it. Press EDIT (SH I FT/1) .
What has happened ? The l ine that the p rogram cursor was pointing to has been put at the bottom of the
d isplay (screen). ready for us to a lter. Now you can use the left and r ight arrow keys (SH I FT/5 and
SH I FT/8} to move the cursor a long the l ine to change characters as you 've done before . We' l l now t ry to
change the word " E NTER" into the word "TYPE" .

Use the cu rsor-right key (SH I FT/8} to move the cu rsor unt i l it has just gone past the letter "R" i n the
word " E NT E R " . Do this whi le you a re fol lowing this text. Now press the RU BOUT key five t imes - this
removes the word " E NTER" . Type in the new word "TYPE", and there we a re ! Ready to go back. J ust
press N EWLI N E and back it goes .

You shou ld now be able to change any l ine in a prog ram that you wish. The steps are :

1 . Move the program cursor (&I) t o the l ine that needs to be changed .

2. Press E D IT, which puts the l ine at the foot of the screen .

3 . Alter the parts of the l ine that a re i ncorrect by using the cu rsor-right and cu rsor-left keys and
RUBOUT. I nsert the new pieces. Remember that RU BOUT erases the letter to the left of the cu rsor,
and new letters a re inserted at the c u rrent cursor posit ion .

4 . Press N EWLI N E to put the a ltered l ine back again .

Question
Name two ways of getting the p rogram cursor to move to l ine nu mber 50 .

47

Chapter 2

Answer

1 . Us ing the cu rsor-up or cursor-down keys (S H I FT/7 and S H I FT/6 respectively)

2. LIST 50 nl

Read section 2 .3/1 again if you were wrong.
The second answer (LIST 50) is qu icker when the l ine you want to change is a long way away.

2 .3/2 EDITING LARGER PROG RAMS

Big prog rams bring us onto something else - What happens when a prog ram has more l i nes than can be
held on the screen? We' re going to see something qu ite clever now. One of the example programs on
the tape is just big enough to f it onto the screen . I t doesn't do anyth ing much , but will serve to show you
how the ZX81 deals with larger programs.

Set up the cassette, and type

LOAD " B IG O N E " nl

When i t 's done , LIST the program. There a re more l i nes to th is program than a re shown on the screen,
but we cannot see them as yet. Aga in , there is more than one way of seeing them.

1 . We can use the " down a rrow" key to move the program cursor to the last l i ne . As it is pressed aga in ,
the ZX8 1 moves the whole screen up one l ine , losing the top l ine , and ga in ing the new l ine on the
bottom of the screen.

2 . We can LIST the last l i ne on the screen. The LIST com mand a lways puts the l isted l i ne at the top of
the screen, so al l the fol lowing l i nes wil l be shown as wel l . The l i nes above a re sti l l i ns ide the ZX81 ,
but they a re not shown on the screen , that's a l l .

Try playing with th is " B IGONE" program to get used to the feel of moving a round with the cursor keys
(the "arrow" keys a re cal led the cursor keys) .

We can a l so remove l i nes from a program, and l i nes 1 50 and 1 60 i n the "B IGONE" program can be
removed . This is done by merely typing the l i ne number of the unwanted l ine , fol lowed by N EWLI N E .
Try deleting l ines 1 50 a n d 1 60.

Now let 's add a new l ine and see exactly what the ZX8 1 does with it . Type :

1 85 PRINT "TH IS L I N E I S N EW" nl

You' l l see that is has been put i n between l i nes 1 80 and 1 90, in the p roper place for its l ine number! So
not only does the ZX8 1 obey each l i ne in nu mber sequence, but it a lso keeps the l i nes stored inside in
l ine number sequence. This makes it much easier to look at a p rogram and fol low it through.

Question
What wou ld you type now to remove the l i ne numbered 1 85 that we have just added?

48

)

)

)

Chapter 2

') Answer

)

)

1 85 nl

Read section 2 .3/2 again if you were troubled by that question.

2.4 PRINT FORMATTING

2 .4/ 1 PR I NT I N G M U LTI PLE ITEMS

We now come to the f inal pa rt of th is chapter. The PRINT command has been mentioned qu ite a lot, but
s ince it is p robably the most powerful of the ZX81 commands, this is not surpr is ing. This t ime we' l l see
how the PRINT com mand can be used to print more than one item on the same l ine of the screen .

I f a n expression i n a PRINT com mand i s fol lowed by a semi-colon " ; " , then the next pri nted
expression wi l l be placed im mediately after it with no spaces in between .

Look at these exam ples :

1 0 LET M I LK P R I CE =20
20 PRINT "TH E P R I CE OF M I LK IS " ;
3 0 PRINT M I LK P R I C E

Since l i n e nu mber 2 0 has a semi-colon fol lowing it. the next printed expression (i n this case the
number held by M I LK PRICE) wi l l be placed immed iately after the f i rst. Type them in and run them -
don't forget NEW if there's anything i nside the ZX8 1 at the moment ! See what happens. The screen
show this :

TH E P R I C E O F M I LK IS 20

I f you d id n 't get a s pace between " I S " and "20", then it i s because you did n't put a space after th e
word " IS" i n l i ne 20. Remember that the next printed field fol lows the fi rst one with no spaces between.
If you want them, you must put them in you rself . Edit l ine 1 0 and try it aga in .

We can a lso put more than one expression on the same l ine of a PRINT statement, l i ke so :

1 0 PRINT "TH E P R I C E OF M I LK I S " ; M I LK PR ICE
or

80 PRINT "TH E AREA I S " ; LEN GTH* B R EADTH

The second example is conta ined in another program on cassette cal led "AR EA3", and we' l l be
looking at that in a few minutes . The PRINT statement can have as many expressions on it as you want
- except that if you put too much into it. the ZX81 wi l l split it onto two l ines on the screen, just l i ke the
REM statements d id i n the program "AR EA2" . You need to keep track of exactly what you are pr int ing.

49

Chapter 2

2.4/2 PRINT ZONES

Another usefu l item is to separate expressions with commas i n a PRINT command. This· means that the
next printed expression wil l start at the next "print zone" on the screen . What does that mea n ?

A normal typewriter h a s a "tab" key, which lets you move t h e carriage t o a predetermined place o n
t h e paper, s o that letters can appear in regu lar columns down t h e page. T h e ZX81 can do the same -
whenever it sees a comma in a PRINT command, it moves to the next "print zone" . These "print
zones" a re a lways set at position 0 and position 1 6 on each l i ne of the d isplay screen.

In case you a re not aware, the display screen is bui lt up as fol lows :

24 l i nes down
32 positions across

a lthough the last two l ines on the d isplay screen cannot be used by a prog ram - the ZX81 uses these to
tell you if an error has occurred, or to ask for some data when it obeys an INPUT statement.

Effectively, then, the pr int zones spl it the screen in two, since position 1 6 is exactly ha lfway across.
Here a re some more examples of PRINT statements using commas and semi-colons. You should try
entering them a l l and running the resu lt ing program to see what each one does .

1 0 LET N U M = 7
20 PRINT "TH E R E A R E " ; N U M ; " DAYS I N A WEEK"
30 PRINT "TH E S EVEN TI M ES TABLE IS"
40 PRINT 1 * N U M , 2* N U M
50 PRINT 3* N U M ,4* N U M ,5* N U M ,6* N U M

These examples show you that you can m ix text, numeric expressions, semi-colons and com mas i n any
way that you wish. You could even have a l ine l ike :

60 PRINT , " H E LLO"

which wou ld pr int the word " H E LLO" starting at position 1 6 on the l ine .

Question
Write a smal l p rog ram to print the fi rst s ix letters of the a lphabet down the middle of the screen. Type

NEW f irst to remove a l l the bits and pieces in the ZX81 that we have been playing with, then enter you r
program to see i f i t works.

50

")

)

)

)

)

)

Chapter 2

Answer
As with a l l programs, there a re several ways to do the same th ing, but broadly, your program should

look l i ke this :

or

1 0 PRINT , "A"
20 PRINT , " B "
3 0 PRINT , " C "
4 0 PRINT , " D"
50 PRINT , " E "
60 PRINT , " F"

1 0 PRINT , "A", , " B " , , " C" , , "D", , " E " , , "F"

D id your solution work? Did it match one of these ? If so, then carry on with the next section . If you ' re
i nterested in the second solution, then the reason it works is as fol lows :

- the fi rst comma moves the ZX81 to the next "tab" stop, which is ha lfway across the screen , and
then the ZX81 p rints the letter A.

- The next comma ta kes the ZX8 1 to the next "tab" stop, which is off the end of the l i ne , so i t goes
onto the beg inn ing of the next l i ne on the screen. A further comma takes it to ha lfway across this l i ne
and pr ints " B " .

- this i s repeated for the next 4 letters.

Read sections 2 .4/1 and 2 . 4/2 again to understand it more fu l ly .

2 .4/3 U NRAVE L L I NG A PROGRAM

Now we can load that p rogram "AREA3" .
There i s n o need to type NEW before load i ng a program from tape, since the load i ng p rocess

automatica l ly wipes out whatever is there .

LOAD "AR EA3"

LIST the program to see what it conta ins . It is a lmost the same as "AREA2" , but has a few subtle
d i fferences. These are :

- l ine 30 has a semi-colon fol lowing it , which means that whatever is p ri nted next wi l l fol low this f ield
immed iately.

- l ine 45 is new. It p rints the value of LENGTH that has just been i nput from the keyboard, and
therefore lets us see the va lue of LENGTH even after we have entered i t . Th is p roblem was
h igh l ighted in the points ra ised p reviously .

- l ines 50 and 65 do the same as l ines 30 and 45, but with the B R EADTH var iable instead .

- l ine 70 has been a ltered to just the statement PRINT with noth ing fol lowing i t . Th is has the effect of
p ri nt ing a b lank l i ne . A useful tr ick which is worth remembering .

- l ine 80 now pr ints the answer on the same l ine as the text which introduces the answer.

R u n this program and see how it d iffers from "AREA1 " and "AR EA2" .
H e re's a f inal problem for you :

5 1

Chapter 2

Question
Write a program to do the fol lowing :
Ask for a number from the keyboard and pr int out the square of the number and the square root of the

number with explanatory text. The screen resu lts should look l i ke :

52

ENTER A N U M B E R : yy
yy SQUARED I S nn
TH E ROOT O F yy I S m m

(1 1 1 1 i s the l i n e riumber o f the last obeyed command)
Note that the colon (in " E NTER A N U M B E R : ") is part of the text, not a special symbol of any sort .

)

)

)

)

Answer
You r prog ram should look something l i ke :

1 0 REM PROG RAM TO CALCU LATE SQUARES AND ROOTS
20 PRINT " E NTER A N U M B E R : " ;
30 INPUT N U M B E R
40 PRINT N U M B E R
50 PRINT
60 PRINT N U M B E R : " SQUAR ED IS " ; N U M B E R* N U M B E R
7 0 PRINT
80 PRINT "TH E ROOT OF " ; N U M B E R ; " IS " ; SQR(N U M BER)

An example run wou ld then give :

ENTER A N U M B E R : 9
9 SQUAR E D IS 8 1
TH E ROOT O F 9 I S 3

Chapter 2

H ow did you get on? Did you r progra m work ? You have done extremely well if it d id . Continue with
the n ext page.

You may have got stuck t rying to remember how to get a square root. Th is was covered in Chapter 1 ,
sect ion 1 .4 " M athematical Fu nctions" .

When you have checked over you r prog ram and found out why i t d idn ' t work properly, use the edit ing
keys to a lter it and try it aga in . I t is qu ite important to get it worki ng at th is stage, as. further chapters
depend on you r understanding each stage of the course. If you are f ind ing it hard , then it is the right t ime
to take a breather and look over some of the tricky sections again .

Summary
Let's take a last look at some of the topics we've covered in th is chapter.
In the next chapter we' l l be meeting some commands which a l low the ZX8 1 to perform repetitive

tasks, taking some more of the d rudgery away from you .
- you 've seen how l ine numbers a re used for several reasons; they te l l the ZX8 1 to store them as part

of a p rogram, and also ind icate the sequence of execution when run .
- how the LIST command can be used both to assist editing and to view port ions of a program on the

screen .
- how the INPUT command can make a program re-usable.
- how to use the cursor keys and the E D I T key to a lter program statements.
- how to pr int text strings, and how commas and semi-colons can be used to format printed

expressions.
- how you can an notate you r prog rams with REM statements to make it clearer for both yourself a n d

othe rs t o understand .

Exercises

1 . Write a p rogram to convert from one cu rrency to another (£1 = $2, £1 = 1 1 fr, £1 = 21 00 l i ra) .

2 . Ca lcu late the roots of a quadratic equation using the formula :

roots = - b ± Vb2 - 4ac
2a

53

Chapter 2

3. Calcu late the velocity of a fal l ing object after t seconds, where velocity = 32t (32 is the force of
gravity, i .e . 32ft per second2) .

4 . Using your answer to (3) , how fast do you th in k the apple was trave l l ing when it fe l l on Newton's
head? A tree is rough ly 20ft high and you wil l need to know that d istance = 1 6t2 (when measu red in
feet) .

54

)

)

)

S L O \iV

D

()

Chapter 3

) Getting Around (Using the IF and GOTO com ma nds)

)

)

)

(Using the IF and GOTO commands)
I n th is chapter we wi l l be studying two main topics. Section 1 looks at the concept of iterat ion ,

showing a lso how a program can be stopped.
Section 2 deals with conditional express ions, which, when used together with the ideas introduced i n

section 1 , becomes a n extemely powerful way of solving problems with a computer.
There is a th i rd section, covering more functions in detai l . s ince these new functions can be invaluable

aids to condit ional expressions .
·

3 . 1 ITERATION (1)

3 . 1 / 1 WHAT IS ITERATION ?

Iteration is real ly the crux of computing, s ince it is where the computer scores over the human bra i n ,
penci l and paper.

You r ZX8 1 can perform l iterally hundreds and thousands of d ifferent instructions each second - far
faster than you can . Yet we have on ly seen it handle one thing at a time so far . Here's where iteration
comes in . The ZX81 can handle end less repetitive calcu lations, and do each one i n less than the time it
takes you to l ick the end of your penc i l .

Let's go back to our area programs. They were qu ite acceptable - certain ly "AR EA3" was - but they
only calcu lated one a rea at a time. To calcu late another area you type RUN aga in .

Another point that may have crossed your mind - what use are l i ne n umbers? They must do
something else other than just tel l the ZX8 1 which order to obey the statements in , surely? I f you did
th ink that, then you were correct. We can tel l the ZX81 to perform the statements in a different
sequence. The command to use is

GOTO (on the G key)

fol lowed by a l i ne number. The l i ne n umber tel ls the ZX8 1 which l i ne to obey next. How can we use th is
new command ?

Here's a s imple example of the "AR EA 1 " program s l ightly altered :

1 0 INPUT L E N GTH
20 INPUT B R EADTH
30 PRINT LE N GTH * B R EADTH
40 GOTO 1 0

N otice that I have stopped tel l i ng you to press N EWLI N E after each program statement - from now o n
I ' l l assume you ' re going to do th is a utomatica l ly. All we've done is t o add a new l i ne - l i ne number 40.
This time, when we run the program, the ZX8 1 wi l l at fi rst do exactly what it has always done - ask for
the two variables and print the result . B ut when i t reaches th is new l ine 40, i t wi l l immediately carry on
back at l i ne n umber 10 agai n . I t has been told to go back and continue the program at line number r n.

A GOTO command can specify any l i ne number that it wishes - either forwards or backwards (as we
have just used) . So the "AR EA 1 " program could calcu late as many areas as we want without having to
type RUN at a l l !

Question
Don't worry if you can 't answer th is question, as it is i ntended only to make you th ink a bit, not to test

you .
What problems can you see with the GOTO command ? There are several , and the answer wi l l cover

eac h of them, but try to th ink of a few for you rself.

57

Chapter 3

Ani\ll�r
We wi l l dea l with each of the solutions in later sections, but here a re some of the problems you may

encounter with GOTO.

1 . How do we ever get the "AREA1 " program to stop? Whenever a resu lt is printed, it a lways starts
back at l ine number 1 0 aga in .

2 . What happens after we have printed 22 resu lts? The previous chapter told you that were only 22
l ines down the screen that a prog ram can use.

3 . What would happen in the "AREA 1 " prog ram if we had put GOTO .574 instead of GOTO 1 0? Li ne
n umber 574 is not there.

You may have thought of other points, but the ones above wi l l no doubt cover most of them.

3. 1 /2 STOPPING A PROGRAM

There a re many ways of getting a program to stop, a lthough most of the "proper" ways wi l l have to
wait unti l the next chapter. The method to use depends on what exactly the ZX8 1 is doing.

One method is the S PACE key which has B R EAK written over it . Whenever a program is running,
pressing the B R EAK key wi l l make the ZX81 stop with an error letter D (break key pressed) . B reak does
not work when the ZX8 1 is wait ing for some input from the keyboard, so use the fi rst method in those
circumstances .

If the ZX81 is wa iting for you to enter a number (i . e . it is obeying an INPUT com mand) then by
entering the com mand .

STOP (SH I FT/A - have care ! If you do not press S H I FT properly you ' l l get A
instead !)

the ZX8 1 wi l l stop ru nning the program giving report code D (see the section at the end of th is cou rse for
a l l report codes) . STOP can also be used as a command in a prog ram to stop it from carrying on. Under
these condit ions, the ZX8 1 gives report code 9 . We' l l see more about th is later on .

What happens when we have printed 22 resu lts (or l i nes on the screen)? The ZX81 wi l l stop running
the program and g ive a report code 5, showing you the resu lts so far. If you then enter the com mand

CONT (on the C key)

(standing for "CONTI N U E") , the ZX81 wi l l c lea r the old resu lts off the screen and carry on from where it
left off. If the screen f i l ls up again , the same events occu r. This is a useful way of keeping an eye on
what's going on whi le a program is runn ing .

CONT wil l work after any report code. It is a useful way to restart a program that has fa i led, after you
have looked to see why it went wrong and corrected the program l ine(s) that caused the p roblem.

The last point ra ised i n th is problem was that of an "u ndefined l ine nu mber", where the ZX81 tried to
carry on at a l i ne number that d idn 't exist. This is quite s imple . The ZX8 1 a lways continues with the next

greater line number i f the one given does not exist. If tr is means d ropping out of the bottom of the
program, then report code 0 is g iven, meaning that the program has f in ished. So if the "AREA 1 "
program above had :

40 GOTO 5

then it would work exactly the same, since l i ne 5 does not exist, and the next higher l i ne number is 1 0 .

Question
Set up the cassette recorder and load a program " LOOPER" :

LOAD " LOO PER"

Start the prog ram by RUN, then try to stop i t . It i s considered cheating to switch the ZX8 1 off a t the
mains '

58

)

)

)

)

)

)

Answer
If you haven't done it, then press the B R EAK key.
You should read section 3 . 1 /2 again if that foxed you .

3. 1 /3 CONDITIONAL GOTO

Chapter 3

Now you 've been introduced to the GOTO com mand, it 's t ime to look a bit more deeply. The l i ne
number that fol lows the word GOTO is actua l ly a numeric expression, so we could write :

GOTO ALPHA
or even

GOTO B ETA * 7

Note that ALPHA and BETA must have been previously assigned with LET statements. If you have a
th ink about that, you ' l l qu ickly rea l ise that there's a great deal of h idden potential in the GOTO
command .

Load another program from tape ca l led "GOTEST' ' :

LOAD "GOTEST'

Run it to see what happens. You a re asked for a number between 1 and 5. Enter a nu mber, press
N EWLI N E . Run it aga in , but try a d ifferent number.

Each t ime, the ZX81 gives you a d ifferent result . How? Somewhere it must be looking at what you are
typ ing and doing something different depending on this va lue . Let's have a look. Type LIST when you 've
had enough .

We can qu ickly s kip over l ine numbers 1 0 to 50 since these should by now be fai rly fam i l iar to you . B u t
l i ne n umber 6 0 is the key t o t h e whole p rogram. I t takes t h e nu mber that you have entered, mu lt ip l ies i t
by 1 0, adds 1 00, then carries on a t this newly calcu lated l ine number! T h e GOTO forces the ZX8 1 to
transfer control to a new l ine number ! I nstead of continu ing with the next l ine in sequence, it carries on
with - which l i ne? We can ' t tel l unt i l the program is run , since the variable N U M B E R could conta i n
a lmost anyth ing. I f you entered t h e number 2 , then i t wou ld carry o n a t l i n e 1 00 + 2* 1 0, or 1 20 .

Although you have been asked to enter a number between 1 and 5 , there's nothing stopping you from
entering any number. Run the p rogram again, this t ime entering negative va lues (l i ke - 1 3) , or 1 .5, or 3 . 6,
or 925588, just to see what the ZX8 1 does when it tries to GOTO an inva l id l ine number.

Th is type of GOTO is ca l led conditional, because it is conditiona l upon the value of the fol lowing
expression .

Question
How would you restart a program that has stopped showing report code 5 at the foot of the screen?
I n fact, what does report 5 mea n ?
You may refer to any of the sections at the end of th is course t o assist you, but d o not refer to the

previous few pages.

59

Chapter 3

Answer
Report 5 means that the screen has become fu l l , and no more l i nes can be printed. Typi ng CONT wi l l

restart the program, and a l low another screen-fu l l of items to be p rinted.

3 .2 CONDITIONAL EXPRESSIONS

3.2/ 1 WHAT DOES I T MEAN ?

We're about to meet anothe r topic which goes hand-in-hand with the GOTO com mand, and when this
has been covered, you ' l l have a few more meaty problems to get stuck into.

The last section introduced the idea of conditional branch ing, and now this idea is about to be
expanded.

You have probably thought that some of the methods g iven earl ier for stopping a p rogram seemed a
trifle crude ; if you d id , then you were right - they were crude. Using the "break" key is a bit d rastic, and
is normal ly only used when you s uspect that your new program has "got itself lost", or, us ing the
terminology of the computer world, "got stuck in a loop" . The LOO PER program was a good example of
th is .

So how can we avoid th is?
IF we could test the va lue of a variable, THEN we could stop the program more tidi ly.
In fact, IF we could test the va lue of a variable, THEN we could do lots more with a prog ram, not just

stop it.
The answer has rea l ly just been given to you . The command is

IF (on the U key) .

We can use the IF command to test the value of a variable (or expression) to see if it contains a certa in
va lue. For example :

IF M I LK PR ICE =20 THEN GOTO 200

You ' l l f ind THEN by press ing S H I FT/3 . What wil l this do when the ZX8 1 tries to run it? Wel l , f i rst it
checks to see if M I LK PR ICE is equal to the value 20. I f it is, then whatever statement fol lows the word
THEN wi l l be obeyed - in this case GOTO 200.

I f M I LK PR ICE does not hold the number 20, then the rest of the command is ignored, and the ZX8 1
cont inues with the next l i ne number as normal .

Let's try th is o n the ZX8 1 . Type the fol lowing smal l prog ram i n , but don't run i t just yet . The word
THEN can be found by press ing S H I FT/3 . I t wi l l be good practice for you to type this a l l i n - it's not very
big . Notice that the l ine numbers go up in hundreds . Th is is del iberate, as you wi l l f ind out later o n .

1 00 PRINT " E NTER A N U M BER (1 -5)"
200 INPUT N U M B E R
300 IF N U M B E R = 1 THEN PRINT " O N E "
400 IF N U M B E R = 2 THEN PRINT "TWO"
500 IF N U M B E R = 3 THEN PRINT "TH R EE"
600 IF N U M B E R = 4 THEN PRINT "FOUR"
700 IF N U M B E R = 5 THEN PRINT "F IVE"

Now let' s look to see what's go ing on . Fi rst of a l l , the program (when run) wi l l ask you to enter a
number. Although the message says " 1 -5", there is noth ing to prevent you entering any number.
Anyway, you wil l then enter a nu mber and press newl ine . The next f ive l i nes in the program in turn look
to see what va lue has been entered . L ine number 300 checks to see whether the n umber was 1 , and if
so, prints a word corresponding to this. Line 400 sees if the n umber was a 2 , and if so, then pri nts the
text "TWO " . Note that i f the number was 1 , then l ine 400 wi l l not do anythi ng, s ince the number cannot
be 1 and 2 at the same tim e ! The same logic appl ies to l i nes 500, 600 and 700.

Now ru n the program and check that it works in the way we've just d iscussed .

Question
What do you expect the p rogram to do if a number (say) 41 is entered instead of 1 to 5?

60

)

)

)

)

)

Chapter 3

Answer
Nothing. s ince l i nes 300 to 700 on ly check for numbers in the range 1 to 5. The prog ram wou ld merely

g ive a code 0/70 at the foot of the screen .

3 . 2/2 E QUALITY AND I N EQUALITY

Wouldn 't it be nice if we cou ld get this p rogram to throw out numbers that it wasn't interested i n ?
We can . The cond itions in an I F com mand can be grouped together to form a real ly compl icated

statem ent i f you want, althugh it is norma l ly better to restrict them to manageable s izes.
Here we a re going to find another l ist of items to be remembered .
You have a l ready seen that two values can be tested for equa l ity (us ing the = s ign i n an IF statement) ;

h ere now is a fu l l l i st . They a re cal led relational operators, meaning that they a l low one value to be tested
relative to another :

So we cou ld write :

operator

>
> =
<
< =
< >

where on keyboard
S H I FT/L
S H I FT/M
S H I FT/Y
S H I FT/N
S H I FT/R
S H I FT/T

meaning
equal to
greater than
greater than or equal to
less than
less than or equal to
not equal to

IF M I LK P R I C E>20 THEN GOTO 200
if M I LK PR ICE holds a va lue greater than 20, then the ZX81 contin ues
with l i ne number 200, otherwise it just carries on with the next l i ne
number.

IF N U M B E R < = 5 THEN GOTO 200
if the va riable N U M B E R contai ns a va lue less than or equal to 5 , then
the ZX8 1 continues at l ine 20.

The second example here g ives a c lue as to how we can a lter our prog ram to reject i nval id numbers that
a re entered .

Question
Can you add two new l ines to the p rogram g iven above which wi l l force the program to ask for

another number if the one g iven is less than 1 or greater than 5?
Use l ine n u mbers in between the exist ing ones.

61

Chapter 3

Answer
Here is one solut ion . Yours may vary s l ightly, but should fol low these gu idel ines :

2 1 0 IF N U M B E R < 1 THEN GOTO 200
220 IF N U M B E R >5 THEN GOTO 200

Your answer could have retu rned to l i ne 1 00, or you could have used <= or >= symbols with
d ifferent testing val ues. The l i nes cou ld also have been placed after l i ne 700. There a re many sol ut ions
that a re al l equa l ly val id , and you should try entering you r l i nes into the program to check that they have
the desired effect.

Did it work? If not (that word if gets everywhere !) then read sections 3 .2/1 onwards aga i n . You rea l ly
must grasp this concept.

3.2/3 LOGICAL O PERATO RS

Now we come to a second l i s t of th ings to remember. This t ime, they a l low for more than one condit ion
to be tested at the same time, and a re cal led logical operators. The answer g iven above can be reduced
to a s ing le IF command us ing one of these.

operator
AND

O R

where on keyboard
S H I FT/2

S H I FT/W

function
two condit ions must be t rue for the
whole statement to be true.
one of the two condit ions m ust be true
for the whole condit ion to be true .

Th is looks compl icated when written l i ke th is , but i t 's rea l ly qu ite straightforward . We' l l be looki ng at
both of these in turn , but f i rst let's see exactly what an IF statement is doing for us .

3.2/4 CO NDITIO NAL EXPR ESSIO N VALUES

Taking the answer to the previous question in section 3 .2/2, we can now re-write it as :

2 1 0 IF N U M B E R < 1 OR N U M B E R>5 THEN GOTO 200

The OR in between the two expressions means that if either one is true (i . e . N U M B E R is less than 1 , or
N U M B E R is greater than 5) , then the statement as a whole is true, and the statement fol lowing THEN is
obeyed.

Hang on a min ute - can we rea l ly ca l l " N U M B ER<1 " an expression? Surely an expression represents
a numerical value? (see chapter 1 for the defin ition of an expression)

The answer to both these questions is yes.
Whenever you ask the ZX8 1 if something is true or not (l ike IF N U M B E R < 1 . . .), the'n th is is actua l ly

g iven a va lue. If the comparison resu lts in a "true" answer, the va lue is 1 , and if the comparison is
"false", then the value is 0 (zero) .

So a l l the IF statement does is to check whether the resu lts of a l l these tests a re "true" - if they a re,
then the rest of the l ine is obeyed (whatever fol lows THEN) .

Try this s imple test. Type the fol lowi ng :

NEW to remove anyth ing inside
1 0 IF 1 THEN PRINT "TH IS HAS WORKED"

Now run i t . Because the statement is "true" (has a value 1) , the words "TH IS HAS WO R KED" have
been printed out for you .

Edit the l i ne to say :

1 0 IF 0 THEN PRINT "TH IS HAS WO RKED"

62

)

)

)

)

)

)

)

Chapter 3

What happens this t ime when it 's run? Abso lutely noth ing, because the statement has a "false" (or
zero) va lue .

So when we write :

1 0 IF M I LK P R I C E = 20 THEN PRINT "TH I S HAS WO R KED"

the ZX81 looks to see if the expression " M I LK PR ICE=20" is true or fa lse. I f it is true, we wi l l get "TH I S
HAS WO R KED" printed on the screen . I f i t i s false nothing wi l l happen, and the ZX8 1 wi l l just carry o n
with the next l ine number.

We' l l look at one more exa mple of this to make the point rea l ly clea r .

21 0 IF N U M B E R < 1 OR N U M B E R>5 THEN GOTO 200

This is broken down by the ZX8 1 into smal ler chunks. Fi rst it asks " is N U M B E R less than 1 ?" and
remembers the answer to th is q u estion . Next it asks " is N U M B E R greater than 5?" and a lso
remembers this answer. It is fai rly obvious to you and me that if N U M B E R is less than 1 , than it can not
a lso be greater than 5, but the ZX8 1 is not qu ite that bright - it needs to work it out by checking both
conditions. The ZX81 now has three possible resu lts from al l this :

N U M B E R< 1
true
fa lse
fa lse

N U M B E R>5
false
true
false

exa mple
- 3
41

2

B ut the orig ina l statement said " O R " - so the ZX81 now asks " is either one OR the other of these
two resu lts true?" I f this new expression is true, then the overa l l question is true, and the ZX81 wi l l
GOTO 200.

The table ear l ier gave another type of operator - AND. Th is is fa i rly s imi lar i n the way it works to Oft
and you can most l ikely see how to use it straight away. Here is an example of it in use with fu l l
explanations :

20 IF M I LK P R I C E = 20 AND B R EAD PR ICE = 42 THEN GOTO 50

Both condit ions m ust be true before the ZX8 1 wi l l GOTO l i ne 50 - i .e . M I LK
PR ICE m ust equal 20 and B R EAD P R I C E must equal 42. If either has a d ifferent
va lue, then the statement is ignored .

Here's an example of a program using IF statements in p lenty - type it in and ru n it :

1 0 PRINT " E NTER YOUR AG E " ;
20 INPUT AG E
30 PRINT AG E
40 IF AG E< 1 3 THEN PRINT AG E-1 ; " YEARS OLDER THAN M E"
50 IF AG E> = 1 3 AND AG E< = 1 9 THEN PRINT "A TEENAGER , H U H?"
60 IF AG E = 2 1 THEN PRINT " I KNOW . . . I KNOW . . . "
70 IF AG E> 1 9 AND AG E<>21 AND AG E <40

THEN PRINT "YOU ARE AT YOU R B EST'
80 IF AG E > = 40 THEN PRINT "HON ESTY IS THE B EST PO L ICY"

You may recognise the fact that a s im i lar routine was used in the "STARTERS" program in the
I nt roduction . Run the program giving severa l d i fferent ages to see how the ZX81 reacts each t ime.

3.2/5 A S E RI ES O F P RO B L E M S

Question
Time to write a smal l prog ra m .
This prog ram m ust print t h e n u m bers 1 t o 1 0 o n consecutive l i nes down the screen . Remember that

you use the STOP command to get you r program to f in ish t idi ly.
H e re is an example ru n :

63

Chapter 3

64

1
2
3
4
5
6
7
8
9
1 0

.)

)

)

)

)

)

Answer
This solution is one of many:

1 0 LET N U M B E R = 1
2 0 PRINT N U M B E R
3 0 LET N U M B E R = N U M B E R + 1
40 I F N U M B E R> 1 0 THEN STOP
50 GOTO 20

Chapter 3

On this occasion, two more solutions a re provided to give you some ideas as to the different ways i n
which the same program can be written. Norma l ly, on ly one solution w i l l be shown.

Or,

1 0 LET X=0
20 LET X=X+ 1
30 PRINT X
40 IF X= 1 0 THEN STOP
50 GOTO 20

1 0 PRINT 1
20 PRINT 2
30 PRINT 3
40 PRINT 4
50

1 00 PRINT 1 0
1 1 0 STOP

You may f ind this solution frivolous, but it is a va l id answer to the q uestion as posed . This is meant to
show you that there is never a "correct" way to write a prog ram. Obviously, this last solution is longer
than the other two, and would take you longer to enter, so, if for no other reason, the f i rst two solut ions
a re p referab le .

I f you found that question stra ightforward (it may not have been s imple, but that 's not the point) then
carry on with the next section .

One com mon problem when anyone starts program ming, is h o w to get going. Perhaps you have
found this out by looking at the answers g iven - don't feel ashamed to cheat from time to time, but
a lways try to answer the q uestions on you r own f irst, and then only look at the answers if you a re t ru ly
stuck .

I f you found that problem part icu la rly stiff then perhaps you should read this chapter over aga in ,
paying good attention to a l l the smal l examples. Always try to run them on you r ZX8 1 - it helps put i t a l l
in perspective .

Questions
H ere is a smal l set of questions for you to answer. Try to answer them a l l before you turn the page

over to check your answers.

(a) Write down what you th ink the fol lowing smal l programs will do if run :
(i) 1 0 IF 23>7 THEN PRINT " S EAS I DE"
(i i) 1 0 LET F= 1 2

20 IF F<>5 THEN PRINT "QU ITE R I G HT'
(use the table g iven i n Section 3 . 2/2 to see what the symbol <> means)

(i i i) 1 0 LET VIC=5
20 IF 1 0>VI C+6 THEN PRINT "OH YES IT IS"

(iv) 1 0 LET X= 1 00
2 0 LET Y=40
30 IF (X/2)=Y THEN PRINT "WHY NOT? "

65

Chapter 3

66

(b) In the next group of smal l programs, two variables a re used throughout. These a re :

ALPHA which holds the value 1 0
B ETA which holds the va lue 20

so if we said "What happens in the fol lowing program"

30 IF ALPHA<B ETA THEN PRINT " H E LLO"

you r answer should be "the program would pr int ' H E LLO' . "
Got it?

I f you want to enter these programs to check the answers, then enter:

1 0 LET ALPHA= 1 0
20 LET B ETA= 20

before you enter the next l ine given below.

(i) 30 IF ALPHA= 1 0 OR B ETA=93 THEN PRINT "YES"
(i i) 30 IF ALPHA= 1 0 AND B ETA=93 THEN PRINT "YES"
(i i i) 30 IF B ETA> =20 THEN PRINT "YOU GU ESSED"
(iv) 30 IF ALPHA*2 = B ETA AND B ETA/2 =ALPHA THEN PRINT "OK"

1)

)

)

)

)

)

Chapter 3

Answers
I n each case, the answer shows what would be printed if the program were ru n . Where noth ing

wou ld be printed (because the cond ition was fa lse), the solution is " noth ing " .
(a) (i) SEAS I D E

(i i) QU ITE R I GHT
(i i i) noth ing
(iv) nothing

(b) (i) YES
(i i) noth ing

(i i i) YOU G U ESSED
(iv) O K

These problems have actua l ly i nt roduced some new features associated with I F statements, but you
p robably worked them out for you rself q u ite logical ly.

I f you found them impossible, then read section 3.2 over aga i n .

3 . 2/6 COMPLEX CONDITIONAL EXPRESSIONS

The last series of problems ta l ked about some new featu res - what a re they?
F i rst of all is the fact that IF statements can conta in numeric expressions, not just variables. So i t i s

q u ite legal to say :

250 IF HOPPER* 1 0+3= ((STAC KER - 7)/(X+8)) THEN GOTO 300

since the relational operators (remember them ?) test the va lue of the numeric expressions either s ide .
Second ly, we come back to a topic ra ised in Chapter 1 - priorit ies . The examples g iven above d id not

mention the order in which you shou ld work out the various expressions - this was left to you . The
ZX8 1 , however, n eeds to have some sort of ru le that tel ls it what to work out fi rst. Chapter 1 gave a l i st
showing the priority of the various a rithmetic operators (e .g . addit ion, subtract ion, d ivis ion etc) . Now we
need to extend th is l ist so that we can see exactly where AND, OR, = , <> and al l the others come i n
the ZX8 1 ' s l ist of priorit ies.

Operator Priority Description
() 1 2 bracketed expressions (innermost f i rst)

any function 1 1 e .g . SIN, SQR. etc (exc lud ing NOT)
* * 1 0 "to the power of" , o r exponentiation
- n 9 unary minus (i .e . negative numbers)
* 8 m u ltip l ication

7 d ivision
+ 6 add ition

6 subtraction
5 equals

< > 5 does not equal
> 5 g reater than

> = 5 greater than or equal to
< 5 less than

< = 5 less than or equal to
N OT 4 i nversion (more on th is later)
AND 3 log ica l
OR 2 logical

So how does th is affect you?
Let's take some examples, and see how the order of priority works i n the ZX8 1 .

1 0 IF ALPHA= 1 0 OR B ETA=20 AND ALPHA=97 THEN GOTO 50

67

C hapter 3

Assum ing that ALPHA holds 1 0 and BETA holds 20, what do you expect the outcome of that
statement to be ?

Remember that AND takes priority over O R , so the order of working out i s :

(a) "equals" is the h ighest priority operator in the l i ne , so f i rst o f a l l the ZX81 works out the th ree
"equa l" cond itions to see if they a re true or false. This resu lts in someth ing l i ke :

1 0 IF ALPHA= 1 0 OR B ETA=20 AND ALPHA=97 THEN GOTO 50
(true) (true) (fa lse)

(b) AND has the next highest priority, so the conditions B ETA=20 AND ALPHA=97 a re considered
next, and we get :

1 0 IF ALPHA= 1 0 O R B ETA=20 AND ALPHA=97 THEN GOTO 50
(true) (true) (false)
(true) (false

since AND means that both cond itions must be true for the whole to be true.

(c) Last of a l l , the two rema in ing cond itions a re connected by OR, which means if one of the two is
true, then the whole condition is true. So :

1 0 IF ALPHA= 1 0 OR B ETA= 20 AND �LPHA=97 THEN GOTO 50
(true) (true) (fa lse)
(true) (false
(true

Because the overa l l statement is true, the ZX81 wi l l continue at l ine number 50.
It wou ld have had a d ifferent outcome if the priority of AND and OR were reversed, and you may l ike

to work that out for you rself using a s im i la r method.
Of cou rse, it is perfectly legal for you to write brackets a round the items you want the ZX81 to work

out f i rst - just l i ke you were shown in Chapter 1 . In most cases this is not necessary, but if you want to
write an expression l i ke those above, it is a lways worthwhi le putting brackets around the various items
purely to make them clearer to you rself (let alone the ZX81 !) . At least the statement wi l l work in the way
you intend it to, and not i n some pecu l iar fashion that you can 't qu ite grasp.

One more point before we finish with IF - you have seen above that whatever fol lows THEN can be
any valid statement. Since IF is itself a val id statement, one IF can fol low another, l i ke th i s :

I F M I L K PR ICE=20 THEN I F B R EAD P R I C E =42 THEN PRINT " IT I S"

I n this part icu lar case, you cou ld have achieved the same th ing by us ing AND :

IF M I LK PR ICE=20 AND B R EAD P R I C E = 42 THEN PRINT " IT I S "

a lthough there are o n e or two cases where the f i rst method i s the only possible way o f writi ng the
statement without us ing two condit ions. You ' l l meet this in another chapter later on - for now, just
remember that it is qu ite legal to use two or more IF statements together.

Wel l , time for a bit of revis ion.

Question

68

(a) G ive two examples of relational operators.
(b) G ive two examples of logical operators.
(c) What is the value of a "true" expression?

)

)

)

)

)

)

Chapter 3

Answer
(a) You can have any two of = <> < <= > > =
(b) There are only two logical operators, and they are A N D and O R .
(c) 1
Section 3 .2/2 covered relational operators, and section 3 .2/3 covered logical operators . You should

read these sections again if you have confused the two types.
I f your answer to part (c) was wrong, then read section 3 .2/4 again .

3 .3 MORE FU NCTIONS

3.3/1 DEFINITIONS

Now that you can handle IF and GOTO, it ' s t ime to i nt rod uce you to a few more fu nctions.
The first is the INT function .

INT function . This fu nction g ives t h e integer va lue o f t h e expression following (which may b e enclosed
in brackets), thus los ing any decima l places which the va lue may have held. For example :

PRINT INT 1 2 . 789

wou ld print 1 2 . Al l the decima l places a re lost. We can write a smal l routine to separate the "whole
n u mbers" from the "fraction" of a ny number as fol lows :

1 00 LET WHOLE= INT N U M B E R
1 1 0 LET FRACT= N U M B E R -WHO LE

. . . assuming that N U M B E R conta ins the desi red value .
I f N U M B E R held 1 2 . 789, then after runn ing that smal l routi ne, WHOLE would contain 1 2, and FRACT

wou ld conta in 0 .789.
Don't forget that if you put brackets a round an expression, then the INT fu nction operates after the

expression has been fu l ly eva l uated , so that

PRINT INT (2.6 * 2)

. . . would print 5, whereas . . .

PRINT INT 2 .6 * 2 (no brackets)

. . . would print 4 .
The INT function a lways rounds down, so negative numbers take the next lower integer va lue - e .g .

INT - 2 .3 gives - 3 .

SGN function . Th is function returns the sign of the fol lowing expression - i f it is negative, then the va lue
- 1 is returned. I f positive, then + 1 is returned . I f, however, the express ion is zero, then SGN retu rns
zero . H ere a re a couple of exa mples :

SGN - 27 would give - 1
SGN 45.887 would give 1
SGN (6* 2- 1 2) would give 0 .

The SGN function is q u ite often used in computer games which i nvolve boards or square grids, so that
the d i rection of one object relative to another can be determ ined.

Here's a fu l l example for you to t ry so that you can get a better pictu re of what's going on .

69

Chapter 3

1 0 LET V = - 23
20 LET X = 57
30 LET X=X * SGN V
40 PRINT X,V

ABS function . The ABS function always returns the positive value of the expression that fol lows. So if
the expression was, for example, - 37 . 5, then

PRINT ABS - 37 . 5 would g ive 37 .5 (Try it !)

Again, i n board games, ABS i s used to check that a d istance entered i n us ing a n INPUT command is
withi n the correct range (say, + 1 0 and - 1 0) . Th is wou ld be written in a prog ram as :

1 0 INPUT M OVE
20 IF ABS MOVE> 1 0 THEN GOTO 1 0

therefore any n umber outside the range - 1 0 to + 1 0 would not be accepted.

NOT function . NOT causes the result of the fol lowing expression to be i nverted - i . e . t rue becomes
false and fa lse becomes true. So, for example,

IF NOT (ALPHA= 1 2) THEN PRINT "IT IS 1 0"

if ALPHA holds 1 0, then th is would print " IT I S 1 0", since ALPHA= 1 2 is false and the NOT alters this to
true. Don't forget that ALPHA= 1 2 is actually a numeric express ion with a value of 0 or 1 accord ing to
whether it is false or true.

NOT m ight cause you a few unexpected problems, s ince it has a lower p riority than "equals", but a
h igher priority than AND and OR. so an expression such as

1 0 IF NOT ALPHA=97 AND B ETA= 33 THEN GOTO 200

does not qu ite do what you might expect.
For now, it is much better that you use <> to represent "does not equal" rather than worry about

NOT. When you have ga ined more confidence in your ab i l it ies, you may l i ke to refer back to this section
to try and work out exactly why that last example wou ld not "goto 200".

Don't be too concerned for now if you ' re having trouble remembering the functions we've covered .
Of the functions mentioned above, by far the most useful is the INT funct ion. S ince the ZX81 always

works in "float ing" decimal places (just l i ke a calcu lator). there a re occasions when the result of a
d ivision (or some other function) leaves some u nwanted fractional parts. The INT function can then be
used to get rid of these - try to ensure that you r prog rams a re "exact", and don't rely on " rounding" to
sort th ings out for you .

3.3/2 THE F UNCTIONS IN USE

To round off th is chapter, here a re some smal l programs for you to write.

Question
Both parts of th is q uestion ask you to write fai rly lengthy prog rams (roughly 1 5 l i nes each) . Don't be

afraid to spend qu ite some t ime working on them - it's a l l good p ractice at th is stage . Refer back to
previous examples and sections on functions to help you work out what you want to do. Type the
programs in to check that they work.

70

(a) Write a program that asks for a number from the keyboard . I t then prints out the s ign of the
number and the absolute value of the number on the same l ine . I t should keep asking for more
numbers unt i l either ten numbers have been entered, or a va lue of zero is entered . An example
run is :

)

)

)

)

)

E NTER A N U M B E R : - 46.5
S I G N I S - 1 AND ABSOLUTE IS 46.5
ENTER A N U M BER : 2
S I G N I S 1 AND ABSOLUTE I S 2
E NTER A N U M B E R : 0
THAT I S ALL FOR NOW

9/9999

Chapter 3

(b) Write a program that takes i n a number from the keyboard and prints the nearest whole nu m ber
(i . e . round the number to the nearest i nteger) . I f the number has been rounded up, then prin t the
text " RO U N DED U P" a longside, and print " RO U N DED DOWN" if the number was rou nded
down. Fractions of 0.5 and above a re to be rounded up. Don't forget that when round ing negative
nu mbers, that - 45.5 would round UP to -45 and -45.6 wou ld round DOWN to - 46. Stop the
program when either 1 0 numbers have been entered or a number of zero is entered (as in the
previous example) . A sample run :

E NTER A N U M B E R : 5.433
5 R O U N D E D DOWN
ENTER A N U M B E R : 72.5000 1
73 R O U N D E D U P
E NTER A N U M B E R : - 32.4
- 32 R O U N D E D U P
ENTER A N U M B E R : 0 .0000
THATS E N O U G H

9/9999

7 1

Chapter 3

Answers
Once again, there a re many, many ways of writ ing these programs . Here are two solutions :

(a)

(b)

1 0 LET COU NT=0
20 PRINT " E NTER A N U M BE R : " ;
3 0 INPUT N U M B E R
40 PRINT N U M B E R
50 I F COUNT= 1 0 O R N U M B E R = 0 THEN GOTO 1 00
60 PRINT " S I G N I S " ; SGN N U M B E R ; " AN D

ABSOLUTE I S " ; ABS N U M B E R
70 LET COUNT = COU NT + 1
80 GOTO 20

1 00 PRINT "THAT IS ALL FOR NOW"
1 1 0 STOP

1 0 LET COUNT=0
20 PRINT " E NTER A N U M B E R : " ;
30 INPUT N U M B E R
4 0 PRINT N U M B E R
50 LET CO U NT=COUNT + 1
60 IF N U M B ER=0 OR COUNT> 1 0 THEN GOTO 200
70 LET WHOLE= INT (N U M B E R + 0 .5)

(why do you th ink this works ?)
80 PRINT WH OLE;
90 IF SGN (N U M B E R - WHOLE)= - 1 THEN GOTO 1 20

1 00 PRINT " ROUNDED DOWN "
1 1 0 GOTO 20
1 20 PRINT " ROUNDED U P"
1 30 GOTO 20
200 PRINT "THATS ENOUGH"
2 1 0 STOP

Wel l , a lthough those programs had some s imi larit ies, they were not a l l that easy ! Probably the second
program gave you more d ifficu lt ies than the f i rst, and the real test comes when you run the programs.
Do they work? When a zero va lue is entered, do they stop? I t obviously doesn't matter if your programs
don 't print a n ice l itt le message when they've fin ished ; the important point is that they don't just keep
on going forever.

Testing a program to make sure it works properly norma l ly takes as long (i f not longer) as it takes to
write the program in the f i rst place ! Don't forget to ED IT a ny incorrect l i nes and try aga in . I t 's not q u ite
good enough to just say "Oh , I can see what's wrong - there's no point in trying aga in just for that! ' ' . It
may be that there is someth ing else wrong with the program that was hidden by the f i rst error.

If you had problems, let's try to refer you back to the appropriate section .

- you could not g rasp the "functions" . Read Chapter 1 , section 1 .4 "Mathematical Functions" again ,
and then come back to read section 3 .3 aga in .

- the " I F" statement is caus ing you d ifficulties . Try read ing section 3 .2 "Conditiona l Expressions"
aga in .

- th is "GOTO" business is confus ing . Read section 3 . 1 " Iteration (1) " once more. Now you 've seen
them in use, you may find the early sections a bit easier.

- the P R I NT statements i n the answers were confusing. Although the P R I NT statement was largely
covered in the earl ier chapters, this is the fi rst t ime that we've used them to any rea l degree . You may
l ike to read Chapter 2, section 2.4 " Print Formatti ng" over again .

Summary
Chapter 4 looks at more ways of "getting around" in a program, and starts to look at ways of making a

program easier to write. But for now, l et's just recap a l l the th ings that have come u p in Chapter 3 .

72

)

)

)

)

Chapter 3

- how the GOTO command can be used to a l low repetitive calcu lations to be made, and how the f low
of the program can be control led us ing this command .

- that the STOP com mand can be used in an input data string to force a program to stop.

- how conditions can be eva luated us ing the IF commands to enable a p rogram to cater for
unexpected (or expected) events .

- that certa in functions can assist the evaluation of expressions without necessari ly having a
" mathematica l " pu rpose.

Exercises
1 . Write a program to ca lcu late the f i rst 5 rows of Pascal ' s triangle .

2 . The exercises i n Chapter 2 asked you to write a currency conversion program (exercise 1) . Now see if
you can produce a program more worthy of constant use. The program should a l low several
currencies to be converted by entering an in it ia l select ion, then repeating conve rsions unt i l a value of
zero is entered.

73

)

)

c v B N M

CJ

Chapter 4

) Tidying Up (Using Flowcharts, FOR and NEXT}

)

)

)

This chapter deals with two main topics - section 1 , which deals with methods of making prog rams
concise and efficient. and section 2 which shows a new form of iteration that doesn't involve us ing l i ne
numbers.

A f ina l section is i nc luded i n which we study iteration at work. seeing it operate in a program .
Throughout the chapter we wi l l be concerned with several programs, a lthough one part icular prog ram

i s used to tie together the various points raised in the sections.

4. 1 PROGRAM DESIGN

4. 1 / 1 S IMPLE STE PS

F i rst of a l l we m ust consider program design. What's that?
Whenever you sit down to write a program, there's no point in starting unti l you have got an objective

in mind . Programs (and ideas for programs) do not just flow out of your pen !
To begin with, we' re going to look i n detai l at how to write a program to calcu late pr ime numbers. Th is

i nvolves some com mands that we haven't yet i ntroduced, so there's qu ite a b i t in store for you .
I n case you ' re not aware, a prime number i s one that cannot be d ivided by any number (other than

itself and 1) l eaving whole number answers .
The program shal l have the following defin ition :
Take two numbers from the keyboard . The f i rst is the starting point and the second is the last n u m ber

to be checked, so that we would g ive (say) a start ing point of 23 and a f in ish ing point of 1 22, and the
program wou ld pr int out a l l prime numbers between these two points. On completion, the program wi l l
ask for another set to be entered . I f both numbers that a re entered a re zero, then the program wi l l stop .

We must in it ia l ly write down in clear steps exactly what the p rogram is to do.

1 . Display a message and i nput a n umber from the keyboard . This is the starting point.

2 . Display a message and i nput a second nu mber from the keyboard, this t ime the f i n ish ing point.

3 . Check to see if both numbers a re zero, in which case stop the program.

4. Test that the f in ish ing point is larger than the starting point (had you thought about that?) . and if not,
reject the f in ish ing point and ask for another.

5. Check to see if the start number is prime, and if so, then print it .

6 . Add one to the start ing point number, and test to see if it has gone past the finish point. I f i t has, then
start back at step number 1 again . Otherwise, cont inue at step number 5 .

Already, some of these steps may be suggesting some com mands or statements to you . and the
outl ine of a p rogram taking shape i n your mind.

4. 1 /2 F LOWCHARTING CON C E PTS

Now that we've def ined i n some deta i l what we want to happen, we must beg in to look at those 6 steps
a bit more c losely. This stage is ca l led flowcharting, and i nvolves you in writ ing a sequence of boxes
each of wh ich conta i ns a s ing le action. From this flowchart, you can d i rectly write a p rogram. Although
flowcharts can be rea l ly glamorous at t imes, here we' l l restrict it to on ly two types of boxes, an "action"
box. which i nstructs the computer to do something, and a "decis ion" box, wh ich asks the computer to
test something and GOTO the appropriate place depending on the test being true or false.

H ere is an example of each type of box :

77

Cbapter 4

(a) "act ion" box

P R I NT M I LK P R I C E

The "arrowed l ines" leading into a n d o u t o f the box i nd icate the flow o f t h e p rogram, so the next
action in the program would be connected to this box by the arrowed l ine leading out from the
base. You ' l l see a fu l l flowchart of our example program soon.

(b) "decision" box

YES

NO

In a "decis ion" box, there a re two ways out s ince any decision (or condit ion) can result in two
answers - true (or YES) and false (or NO) . Again , these arrows would connect to the next action or
decision box accord ing to the g iven resu lt.

Question
Write down how you th ink the fol lowing would be written in a flowchart :

78

(i)
(i i)

50 IF GALLS= 1 0 THEN GOTO 1 00
430 LET CO R KS = 55

)

)

)

J

Answer
(i)

(i i)

NO

LET CO R KS = 55

Read Section 4 . 1 /2 again if you were wrong.

4. 1 /3 STUDYING THE PRO B LEM

Chapter 4

YES (TO L I N E 1 00)

Before we can get rea l ly stuck into our flowchart we need to know a bit more about pr ime numbers -
step 5 above was a bit hazy, wasn't it? Let's have a bit more of a think about them f i rst.

What do we know? Wel l , there should be a remainder after the number has been divided by any other
number. That's easy enough - one of the examples in Chapter 3 asked you to separate an integer f rom
fractions and pr int the two separately, so we can manage that fai rly easi ly. What e lse?

Any number can be d ivided by 1 , so we obviously don't want to inc lude 1 i n our search .
Quite clea rly, we m ust d ivide the number by other numbers, starti ng with 2 , checking to see i f there is

any remainder after each d ivis ion. I f we f ind no remainder, then the number cannot be pr ime, as we wi l l
have found at least one nu mber that wi l l d ivide exactly i nto our suspected prime number.

At what point do we stop? We can 't go on d ividing by numbers indefin itely. This part is a bit cunn ing .
We cou ld go on d iv id ing by numbers, start ing from 2 , u nt i l we got to the number itself - but as the
example below shows, th is involves some dupl icate work :

To test if the n umber 9 is pr ime.

9/2 =4.5 Answer has fractions, so carry on .

9/3 = 3.0 Answer does not have fractions so 9 is not a pr ime nu mber.

To test if the number 1 1 is prime.

1 1 /2 = 5.5
1 1 /3=3 .666
1 1 /4 = 2 .75
1 1 /5=2 .2
1 1 /6= 1 .83
1 1 17 = 1 . 57
1 1 /8 = 1 .375
1 1 /9 = 1 .22
1 1 11 0 = 1 . 1

Fractions, so carry o n .
More fractions.
Fractions aga in .
And aga in .
And again .
F ractions.
Sti l l fractions.
Yet more.
Last of a l l , fract ions.

79

Chapter 4

1 1 is therefore shown to be prime. But do we rea l ly need to check a l l those d ivis ions?
The answer is no - we only need to check up to the square root of the number (in this case 1 1) ,

because after that point we a re basical ly checking the same things over aga in . This is due to the fact that

7 *3=3*7 i . e . the o rder of two items mu lt ip l ied together is i rrelevant . . .

and once we exceed the square root. we a re merely reversing the order of the test (i n effect) .
We now know a l l there is to be known about pr ime numbers, at least as far as this program 1s

concerned .
This a l l may seem a bit pointless, but what we are trying to achieve is the need to check out your ideas

properly before you start writing a prog ra m . I f your " image" of a prog ram's workings is not properly
thought out, then the program will most l i kely not work at a l l . or at best work very inefficiently. U nder
these condit ions, you ' l l probably spend twice as long struggl ing to get the th ing going and end up having
to write it a l l aga in anyway.

Always thi n k it out f i rst.

80

)

)

)

)

)

)

)
l

Chapter 4

4. 1 /4 THE FUL L F LOWCHART

Back to our progra m . Now we can write our ful l flowchart of the prime numbers program . It should look
something l i ke :

NO

PRINT "ENTER START NO."

YES

YES

STOP PROGRAM

PRINT N;"IS PRIME"

>-'Y-=E.=.S---+----- LET N - N + 1

NO YES

YES RUN PROGRAM AGAIN

8 1

Chapter 4

4.2 ITERATION (2)

4.2/ 1 FOR AND NEXT

Although it wou ld be perfectly poss ible for you to write that program with the knowledge you have
gained so far, we can tidy th ings up qu ite a bit, and avoid a few unnecessary GOTO com mands. Where
possible, it is better to avoid GOTO for severa l very good reasons. At the moment, one of the most
important reasons is the p roblem of l ine numbers .

Let's put the prime numbers program to one s ide for now and study th i s new problem for a whi le .
We have seen that it is better to separate l ine numbers in gaps of ten, so that new l ines can be added

into a prog ram . Sooner o r later, though , there wil l come a time when you ' l l want to f it a whole load of
new program l i nes in and there just wi l l not be room. The p rogram starts to get cluttered up with odd
l i nes tucked in here and there and gets extremely cumbersome. At this point, you ' l l want to go through
and renumber al l the program l ine numbers, so that they start again in n ice gaps of ten.

But here's a big problem . I f al l the l ine numbers are changed, what happens to al l those lovely GOTO
commands that a re referring to the origi na l l i ne numbers?

Quite s imply, a l l the GOTO com mands m ust be a ltered as wel l so that they use the new l ine
numbers. And that is not an easy task.

Whenever we can avoid using l i ne numbers in a program, it is better to do so.
Here's one way, and we shal l be using th is in our prime numbers prog ram :

FOR (on the F key) .

This com mand can replace qu ite a few other commands. Let's side-step for a bit and consider a smal l
example. You have a l ready written a program (in Chapter 3) to pr int the nu mbers 1 to 1 0 down the
screen. My solut ion was :

1 0 LET N U M B E R = 1
20 PRINT N U M B E R
3 0 LET N U M B E R = N U M B E R + 1
40 I F N U M B E R> 1 0 THEN STOP
50 GOTO 20

By us ing the FOR statement, this can be reduced to th ree l i nes ! Look at th is :

1 0 FOR N = 1 TO 1 0
20 PRINT N
30 NEXT N

And that's it . O K, so it doesn't make much sense just yet, so let's look at it i n deta i l .

4.2/2 HOW FOR AND N EXT WORK TOGETHER

The FOR statement comes in two parts - FOR and NEXT, which is shown on l i ne 30 above.
FOR a l lows you to specify the starting and finishing va lue of what is ca l led a con trol variable; in th is

case the variable is N (look at l ine 1 0 aga in - FOR N =) . A smal l d isadvantage of us ing this method is
that a control variable can only be a single letter, and not a n ice name l ike N U M B E R . Oh wel l , it 's a smal l
price to pay, and even a s ing le letter can be qu ite meaningful at t imes.

L ine 1 0 therefore says :
Set variable N to the va lue 1 , and cont inue a l l the way through to the va lue 1 0 .

82

)

)

)

)

)

)

Chapter 4

Continue what?
The control variable holds its va lue a l l the way through the following l i nes of program unt i l it comes to

the NEXT statement. At this point, the variable is updated to its next va lue (so if N was 2, it wi l l become
3, and so on) , and the ZX81 starts back at the l ine number following the FOR statement.

If the variable has reached its f in ish ing va lue (given on the FOR l i ne) when it gets to the NEXT
statement, the ZX8 1 wi l l just d rop through the NEXT and carry on with whatever fol lows .

Time to unpick that last example .
The f i rst t ime that the ZX81 comes across l ine 1 0, it sets up a new variable N to the va lue 1 , s ince the

l ine says FOR N = 1 , and therefore 1 is the starting va lue .
The next l ine (20) says PRINT N , and so the number 1 wi l l be printed on the screen.
Now the ZX8 1 sees l ine 30 - NEXT N, so it adds 1 to N, giving 2 , checks to see if 2 is greater than the

f in ish ing va lue on the FOR l i ne (wh ich is the va lue 1 0 - FOR N = 1 TO 1 0) , and s ince it isn 't (2 is less than
1 0 !) , carries on with the l ine number following the FOR statement. In th is case l i ne number 20 .

Once aga in , l i ne number 20 says PRINT N , so we get the nu mber 2 p ri nted out.
Th is carries on unt i l N reaches the va lue 1 0, at which point l ine number 30 wi l l add 1 (!\!EXT N) , g iv ing

1 1 and since 1 1 is g reater than 1 0, the ZX81 wi l l d rop through to the next l ine .
I n th is case there is no other l ine , so the ZX8 1 wi l l stop with the message 0/30 at the foot of the

screen .
Type those three l i nes into your ZX8 1 and run them. See what happens .

Question
(a) Which of the fol lowing three statements a re val id?

(i) 1 0 FOR X=5 TO 23
(i i) 1 0 FOR XTRA=9 TO 1 8
(i i i) 1 0 FOR P=0 TO 1 0

(b) Write a program to p rint the va lues 1 0, 20, 30, 40 up to 1 00 down the screen. Use FOR and NEXT.

83

Chapter 4

Answers
(a) (i) Val id

(i i) Not va l id - control variable names can only be a single letter
(i i i) Val id

(b) 1 0 FOR N= 1 TO 1 0
20 PRINT N * 1 0
30 NEXT N

How did you get o n ? I f you r answers were wrong, then read sections 4 .2/1 and 4.2/2 over aga in .

4.2/3 CONTROL VARIAB LE LIMITS

Before we carry on with our o rig ina l prime numbers program, let 's clear up a couple of further points
associated with FOR and NEXT.

1 . The starting and f in ish ing values on the FOR statement can be any n u meric expressions - this means
you can write th ings l i ke :

1 00 FOR N = (FR EDDY+3)* 1 0 TO J I MMY- 3

2 . If the f in ish ing value is less than the start ing value, then no statements between the FOR and NEXT
wil l be executed . Here is an example. Type it in and run it to check what it does :

1 0 FOR N = 500 TO 499
20 PRINT "CAN YOU S E E TH IS?"
30 NEXT N
40 PRINT "MAY B E YOU N EED SPECS"

3. We can a lter the "step" va lue of the FOR/NEXT loop. The examples above al l assumed that the
control variable would be updated by 1 each time. If we write :

1 0 FOR N = 1 T0 1 0 STEP 2

then each t ime the NEXT statement is met, the control variable wi l l have 2 added to it rather then 1 .
The "step" value can also be any n umeric expression .

These points mean that you could count backwards i f you wanted, by writing the fol lowing progra m :

1 0 FOR N = 1 0 TO 1 STEP - 1
2 0 PRINT N
30 NEXT N

"Ah! " you r a re saying . "But the f in ish ing va lue is less than the start ing value, and so nothing would
happen ! "

84

OK. Time to own up . The actual def in it ion of when a FOR/NEXT loop is terminated i s :

- when the FOR is met, an i n it ial check is made to see i f start is greater than f in ish (if step is greater
than or equal to zero), or start is less than f in ish (if step is less than zero) . If th is is true, then a l l
fol lowing statements are ignored u nt i l a corresponding NEXT is found .

- when the NEXT is met, the same test is made. I f the test is true (i .e. the loop has f in ished) then the
ZX81 ''drops through" to the next l i ne number. If not. the ZX8 1 returns to the l i ne n umber following
the FOR statement.

Whenever the STEP is m issing from a FOR statement, a step value of 1 is assumed by the ZX8 1 .

)

)
/

)

)

)

)

4.2/4 NESTED LOOPS

It is perfectly possib le to put FOR/NEXT loops i nside each other. l i ke th is :

1 0 FOR A= 1 TO 1 0
20 FOR 8 = 1 TO 3
30 FOR C = 1 TO 9
40 PRINT C ;
5 0 NEXT C
60 NEXT B
70 PRINT
80 NEXT A

What wi l l happen ? First of a l l , this l ittle program is on a tape for you to load and look at.

LOAD "FORTEST"

Compare it with the l isting above.

Chapter 4

I n it ia l ly, variable A is set to the value 1 (l ine 1 0) . Line 20 then sets B to the va lue 1 , and l ine 30 also sets
C to the va lue 1 .

Line 40 prints C - i .e. it prints 1 - but is followed by a semi-colon, so more is to follow on this l i ne .
L ine 50 updates C to its next value (2) and since th is doesn't exceed its f in ish ing value, the ZX81 wi l l

go back to l i ne 40 aga in .
This contin ues unt i l the ZX8 1 has printed 1 23456789, at which point C goes beyond its f in ish point,

and so we drop through to l ine 60, which takes B to its next value (2) . and returns to l ine 30 aga in . But
l ine 30 forces the ZX81 to print 1 23456789 (l i ke it d id above) . So now we get three lots of "1 23456789 "
printed on a l i ne . When B has reached 3 (its f in ishing value) , the ZX8 1 drops through to l ine 70 which just
says PRINT. This wil l make the ZX81 start a new l ine next time round .

A l l of th is is repeated 1 0 times whi le variable A goes from 1 to 1 0 .
Watch it whi le it runs - you' l l see 1 23456789 printed (that's variable C doing that) three t imes (variable

B) on each l ine, (variable A) ten times over.

Question
I n the last question , you were asked to write a program that prints 1 0 , 20, 30, 40, up to 1 00 down the
screen . The solution g iven was :

1 0 FOR N = 1 TO 1 0
20 PRINT N* 1 0
30 NEXT N

Write a s imi lar program but with one important difference - the program is to print the resu lts
backwards (i .e . print 1 00, 90, 80, 70 . . . stopping at 1 0) .

8 5

Chapter 4

Answer
1 0 FOR N = 1 00 TO 1 0 STEP - 1 0
20 PRINT N
30 NEXT N

How did you get on? If you messed it up or cou ldn 't do it . then read section 4 .2 " I teration (2)" once
more.

4.3 ITERATION AT WORK

4.3/ 1 WATCHING A PROGRAM RUN

Back to pr ime nu mbers .
The program is on a tape for you - we' l l look a t i t on the ZX81 and pick out a l l the i nteresting bits for

you in this text.

LOAD " P R I M ES"

Try runn ing it before you look at the progra m . For example, attempt the following sample run. just to
see what happens :

RUN
E NTER START N U M B E R 1 0
E NTER F I N I SH N U M B E R 50

E NTER START N U M B E R 0
E NTER F I N I S H N U M B E R 0
9/80

Wel l , not exactly the most exciti ng program in the world, but 1 4th century mathematicians would
have g iven blood for it !

Time to look at the prog ram itself . Type LIST.
One thing to notice straight away is that the last l ine shown ends ha lf-way through, and there's a new

error number at the foot of the screen - report 4! (I f you 've bought a 1 6K RAM pack then this won't have
happened to you .)

This means that the ZX81 h a s got n o more room inside i t t o show any more of the program o n the
screen. I t doesn't affect you al l that much at this stage, but one or two strange things can start to
happen if you a re not aware of it . Whenever you see report 4 whi le l ist ing or runn ing a program you a re
writing, check the section on "Common Problems and Solutions" at the end of this course. It wi l l save
you some awfu l heartaches .

The " P R I M ES" p rogram a lmost f i l ls the ZX8 1 up (without the 1 6K RAM pack, anyway}, and so report
4 is given . There a re many ways of making more room avai lable. and you ' l l be i ntroduced to them later
on in the course . For now. though, we' l l be content to carry on with only a l ittle space left.

L ines 1 to 1 00 should be fai rly easy stuff for you to fol low by now. with the one possible exception of
l ine 30.

Question
(This is memory-jogging t ime !)

What does l i ne 3 0 rea l ly do?

86

)

)

)

)

)

Chapter 4

Answer
It makes su re that any va lue given for START must be positive. The ABS function converts any fol lowing
expression to pos itive.

This was introduced in Chapter 3, section 3.3 " More Functions " . Without spending too much t ime,
check back through that section aga in if you r answer was wrong.

N otice how l i nes 90 to 1 1 0 check for any incorrect F I N ISH va lue and give you a n ice message if
anyth ing is wrong (l ike F I N I S H value is less than START va lue) . The beauty of this is that you a re a lways
aware if someth ing is not l i ked by the p rogram . I t rejects the input and tel ls you so. U n less you have

- good reasons, always make sure you r p rograms let someone know what's going on . It 's not too bad
when you ' re the only person that ever runs them, but when you give them to a friend (or enemy? ! !) ,
they' l l certa i n ly not thank you when they can 't work out what the prog ram is doing a l l the time !

Lines 200 to 400 are a big FOR/NEXT loop. Each nu mber from START to F I N ISH is taken one at a t ime
("step" va lue of 1 is assu med) , and checked to see if it is a pr ime number. Because numbers 0 and 2 a re
pr ime, l i ne 2 1 0 makes su re that numbers l ess than th ree (i .e . 0, 1 and 2) are treated as prime stra ight
away, by sending them to l i ne number 300 (wh ich prints them out as prime) .

L ines 220 to 250 is where a l l the rea l work is done. Ear l ier on , you were shown that i t was on ly
necessary to test for prime up to the square root of the number. S ince any number is d ivisible by 1 , l i ne
220 forces a loop us ing variable F (which stands for FACTO R here) , checking to see if F divides exactly
i nto the number N, start ing at 2, and going up to the next whole number after the square root of N - I NT
(SOR N) + 1 . Remember that the INT function removes a l l the decimal f ractions f rom the fol lowing
expression � in th is case SOR N , or the square root of N .

L ine 230 i s a lso qu ite complex. The va riable WHOLE i s set to the lowest whole number obtained by
fi rst d ivid ing N by F, and d iscard ing any left-over decimal places - INT {N/F) . When this is mu ltipl ied back
by F , if th is new va lue is u nequal to the or ig inal number (N) , then the nu mber F d id not d ivide exactly i nto
N . Let's make that a bit more clea r by looking at a real example :

Assume that N is 1 1 , and that we a re checking to see if the number 2 (F) wi l l d ivide exactly into 1 1 .
Taking N/F, th is g ives 1 1 /2, or 5 .5 .

Tak ing INT { N/F) or INT (1 1 /2), we get answer 5 .

When th is i s m u lt ipl ied back by F (5*2) we get 1 0, and this i s not equal to 1 1 . This is because the 0 . 5
has been d ropped by the INT fu nction .

L ine 240 compares this resu lt with the or ig inal number. I f they a re equa l , then F d ivided exactly into N ,
and therefore N i s not a pr ime number, s o the program goes to l ine 400, which gets the next N va lue .
Otherwise a message N I S PR IME (l i ne 300) is printed out,

After al l the N va lues from START to F I N I S H have been tried, l ine 41 0 wil l start the whole th ing off
aga in .

4 .312 PROBLEMS FOR YOU

Question
In section 4. 1 , you were g iven 6 points which showed what our prime numbers prog ram was to do .

Write down, against each step, the l i ne numbers in the prog ram that correspond to that step.

87

Chapter 4

Answer
Step 1
Step 2
Step 3
Step 4
step 5
Step 6

l i nes 1 0 to 40
l i nes 50 to 70
l ine 80
l i nes 90 to 1 1 0
l i nes 200 to 300
l i nes 400 and 41 0

If you r answer was wrong, then you should check carefu l ly the answer g iven. Try to understand how
the original l ist of points has been translated into a program.

Also, whether you r answer was right or wrong, check the program l isting back to the flowchart. Look
to see how closely connected the two are.

There a re many occasions, especia lly with smaller programs, when it seems a bit unnecessary to
write a fu l l flowchart. This is not a golden ru le, and I would be wrong to tel l you to flowchart everyth ing
you write, but you wi l l nearly a lways f ind your programs are more compact and error-free when you
have fi rst written a flowchart.

Question
Now you 've had a good opportunity to look at a flowchart, it's t ime to write one for yourself. You are
requ i red i n th is question to g ive three results :

(a) a step-by-step gu ide to a program
(b) the flowchart
(c) the actual program

The outl ine of the program is :
This program calcu lates the metric equ ivalent (in centimetres) of i nches. The conversion rate is one

i nch = 2 . 54 centimetres. the program should accept a number i n , which is assumed to be in i nches, and
the program should print out the va lue in centimetres. I t then goes on to print the next 1 1 i nches
converted as well, so if 5 inches were entered, the program would print the results from 5 to 1 6 inches
down the screen . A value of zero inches means that the program is to stop.

No example run is g iven this t ime - you are left to create your own d isplay (but remember how the
primes program worked) .

88

)

)

)

Answer
Here is one poss ible solution :

(a) 1 . Display a message and input a nu mber from the keyboard.

2. Check that if the number is zero, then stop the progra m .

3 . I f the number is negative, then convert t h e number t o positive.

4 . Convert the number to cent imetres and print the result .

5. Add 1 to the inches va lue . Repeat step 4 for 1 1 more conversions.

6. Start at step 1 aga in .

(b) A flowchart of th i s wou ld look l i ke :

(c) The whole program could then be :

PRINT
"E NTER
INCHES"

I N PUT
INCHES

PRINT
INCHES

LET
N = INCHES

PRINT
N *2.54

LET
N = N + 1

1 REM M ET R I C CO NVE RS ION
1 0 PRINT " E NTER I NC H ES" ;
20 1NPUT I N C H ES
30 LET I NC H ES =ABS I NC H ES
40 PRINT I N C H ES
50 IF I N C H E S = 0 THEN STOP

1 00 FOR N = I NC H E S TO I NC H ES + 1 1
1 1 0 PRINT N ; " I N S = " ; N*2 . 54 ; " C M S"
1 20 NEXT N
1 30 GOTO 1 0

YES STOP
PROG RAM

NO

Chapter 4

89

Chapter 4

Perhaps you found it a bit too long-winded and so skipped over a lot of it. Wel l , it doesn 't matter too
much, as long as you feel confident about the topics we've covered .

Program design is largely a personal affa i r - my style very probably d iffers from a lot of other people's ,
and it is important to remember that practice wi l l develop you own ski l ls more than anyth ing else at a l l .
The computer needs to be told absolutely everything, and the reason for flowcharting is to remind you
that you may be assuming things that the ZX81 will not take for g ranted.

Looking at the way other people have written a program is an extremely good way of learn ing . I f you
know someone else who is us ing o r has used this course, try to get hold of their solutions to some of
these p roblems. You may f ind that you p refer their method to the ones g iven here , or even th ink that
your own is the best. E ither way, it helps you to see how your own style can develop, and gradual ly
become a q uick and efficient programmer.

Summary
I n the next chapter, we' l l be looking at how to use the d isplay to more advantage, and how you can run
the ZX8 1 in one of two modes.

Here a re the topics we've covered i n this chapter :

- we've seen how program design can make programming much easier, how a step-by-step guide
and a flowchart can make the p rogram strategy much clearer.

- that it i s far better to avoid using l i ne numbers wherever possib le (i . e . avoiding the GOTO command
where FOR/NEXT can be used) .

- how to use control variables to al low an iteration to be undertaken any nu mber of t imes, also

a l lowing the STEP value of the variable to be altered .

- that FOR loops can be nested with in each other.

- that seeing a techn ique in action can make that theory easier to understand .

Exercises
1 . G iven that 1 st January 1 900 was a Satu rday, write a program that wil l tel l you the day of the week for

any date that you enter (up to 3 1 st December 1 999) . You will p robably need to flowchart th is . So, on
which day of the week were you born ?

2 . Extending exercise (1) a l ittle further, you could a l low the program to calcu late the number of days
that have occurred between any two dates entered (dates du ring the 20th centu ry) .

90

)

\

/

0

0

)

)

Chapter 5

Speeding Up and Looking Nice (Using FAST and SLOW)
We are about to d iscover two ways of runn ing your ZX81 which a l low you to run d ifferent types of
programs under optimum conditions . Th is is d iscussed in section 2, whi le in section 3 we go into more
deta i l on how to make use of the d isplay, so that report 5 can be avoided, and you can create a more
"presentable" screen in you r programs. The f inal section is for those who want to use the ZX printer.

F i rst, though, we' l l have another look at expressions.

5 . 1 USING CONDITIONAL EXPRESSION VALUES

To beg in with, let's study another p rog ram from cassette:

LOAD "SPEEDY"

This program will serve two pu rposes for us, so f irst of all LIST the program on the screen .
The use of true/false expressions has a l ready been shown to you , mai n ly i n Chapter 3, where they

were used in conjunction with IF statements. There is no reason why they cannot be used in LET
statements, though, because they a re sti l l only numeric expressions g iving a value of 0 or 1 . This can be
an extremely powerfu l tool when writing some programs. Here, the idea is used to a l low a black and
white square to be a lternately printed.

L ine 20 sets variable C to an in it ia l va lue of zero - remember: th is is also the equ ivalent of "fal se " .
As we have seen, the screen is spl it up into 2 2 (usable) l i nes down, and each l i ne conta ins 32

positions across. Program l ines 30 and 40 start two FOR/NEXT loops which run for 32 t imes (l ine 40) for
every one of 1 6 t imes (l ine 30) .

Now look at l i ne 50. This l i ne, o r a very s im i la r one, was shown to you in Chapter 3 . The ZX8 1 says "IF
the expression is not true, then obey the fol lowing act ion, which is to PRINT a black square . " S ince
variable C has been set to "fa lse", o r "not true", the ZX8 1 wi l l pr int a b lack square. Notice that the black
square is put in q uotes (" ") so that it is actual ly treated as text. You can put a lmost anything you l i ke in
between q uotes - it is printed exactly as you put i t .

The pr int statement on l i ne 50 is fol lowed by a semi-colon, so a new l ine is not yet started .
L ine 60 is the exact opposite of l i ne 50 - if C is "true", or has a va lue 1 , then a b lank space (or white

square) is printed. As yet, variable C only has a "false" value .
Th is is where l i ne 70 comes in . Th is l ine says :

70 LET C = (C = 0)

What on earth does that mea n ? We' l l n eed to take it bit by bit to u nderstand it properly. Fi rst of a l l , the
ZX81 looks at the expression i n brackets - these are a lways worked out fi rst. The expression C = 0 is
given one of two va l ues - it can be either true or fa lse.

Another way of looking at th is i s to read the statement above as :
" Let the va riable C be assigned the va lue of the result of the expression ' I s C equal to zero7 ' " .
S o i f the expression i s true, variable C is assigned the value of true - i . e . 1 - and i f the expression i s

false, then C i s assigned the value o f fa lse - zero.
At the moment. C contains zero, so the expression C = 0 is true. So the statement can therefore be

regarded as LET C= 1 . After l ine 70 has been run , variable C wi l l conta i n the va lue 1 , or "true" . The ZX8 1
has swapped the va lue of C from 0 to 1 .

I n case you are worried, there is nothing to stop you us ing the same va riable name twice on the sam e
LET statement - the ZX81 i s c lever enough to understand that you want to use the old va lue of the
variable on the right-hand s ide of the l ine, and set the new va lue i n on ly after everything else has been
done . Th is is why a statement l i ke LET X =X+ 1 works.

L ine 80 now takes the ZX8 1 back to l ine 50 with the next va lue of variable X - a step va lue of 1 is
assumed, so X now conta ins the va lue 2 .

L ine 50 says IF NOT C . . . but th is t ime around C is true, so th is l i ne wi l l be ignored.
Line 60 says IF C . . . , and so a while square wi l l be p rinted.
Back to l ine 70 aga in .

9 3

Chapter 5

Question
What do you expect l i ne 70 to do th is t ime? Work it out in the same way that we d id above, by
considering the l i ne bit by bit .

94

)

)

)

)

Chapter 5

Answer
Variable C wi l l contain the va lue 0, or false, after l ine 70 has been run .

I n case you d idn 't understand fu l ly, we' l l look a t i t once more. The expression (C=0) is worked out
f i rst. because it is i n brackets. C cu rrently holds 1 . or "true". so C=0 i s therefore false, s ince C does not
equal 0 . So the l ine can be regarded as LET C=0, since (C=0) gave the value zero, or "false" .

Perhaps the fu l l s ign if icance o f l i ne 7 0 is starting to h it you - every time l ine 70 i s run . the variable C
alternates its va lue between 0 and 1 . Whatever value C conta ins (0 or 1) when the program reaches l i ne
70, i ts value is swapped over.

As an example, i f you were writ ing a games program for two players. this l ine 70 (or someth ing
s imi lar) could be used to ind icate whose turn it is - player 0 or player 1 .

Extremely usefu l .
J ust before w e leave t h i s topic, here's a f inal problem for you .

Question
How wou ld you write a s ingle l i ne that a lternates variable P between the values 0 and 50?

95

Chapter 5

Answer
1 0 LET P=(P=0)* 50

The logic is identical to that g iven above, except that 0*50 equals 0, and 1 *50 equals 50. So P wi l l
a lternate between 0 and 50.

You wi l l also notice l ine 90 in the SPE EDY program is the same as l ine 70. Whenever a complete l ine
of squares has been printed (variable X goes f rom 1 to 32), l ine 90 swaps the value of C around so that
the NEXT l ine printed has the squares in the opposite order.

5.2 RUNNING MODES

5.2/ 1 TIMING T HE TWO MODES

The ZX8 1 can run p rograms in one o f two ways - FAST and SLOW (these commands are found by
S H I FT/F and S H I FT/D respectively). Both methods have advantages and d isadvantages, so the mode
you select for a program can make use of the advantages without any disadvantages being noticed .

Let's look to see what d ifference there is when just run ning a s imple prog ra m .
R u n "SPE EDY". You should do two th ings whi le i t runs . F i rst, t ime it to see how long i t takes before

the message 9/9999 appears at the foot of the screen . Secondly watch to see those squares a lternate
between black and white. This is all as a result of that l ine 70 doing its stuff.

How long did it take to run ? I ' m not going to tel l you - it's up to you to record it on a piece of paper for
later.

Now we're going to alter the ZX8 1 to its other mode - FAST. Press S H I FT/F for FAST, and newl ine .
Run the p rogram aga in , and a lso t ime it to see how long it takes before the message 9/9999 appears at
the foot of the screen . A lso watch to see what happens.

Question
Wel l , how long d id it take? How much faster (approxi mately) do you th ink the FAST mode is than the
normal mode?

96

)

)

)

)

)

)

Chapter 5

Answer
In fact, FAST is roughly 4 t imes faster than the normal mode.

But you probably saw the d isadvantage of FAST - that the screen goes blank whi le the p rogram runs.
You were not ab le to watch the b lack and white squares being d rawn . We' l l dea l with th is i n a m inute,
but fi rst let's examine what e lse happens when the ZX81 is runn ing in FAST mode.

LIST the p rogram again , and try us ing the cursor keys to move the program cursor up and down the
l ines of the program.

You may notice that the TV picture jumps around a bit, but don't worry - th is is qu ite normal when the
ZX81 i s in fast mode. However, you can see that moving the program cursor is a lot faster when you ' re
runn ing in fast mode - the ZX81 does not l ist the program out aga in each t ime (in fact, it does - it's just a
bit too fast for you to see it !) .

Try using the ED IT key to a lter one of the l ines of the p rogra m . Try i nserting a new program l ine . Al l i n
a l l , you ' l l f ind the ZX8 1 a lot qu i cker in fast mode, a n d whenever you type in a new program, or edit an
existing program, you ' l l probably f ind i t better to enter FAST before you start.

So why use normal mode?
Wel l , if you write a program that rel ies on your being able to see what happens whi le the program is

runn ing , then fast mode is not going to be al l that usefu l !
Just to show you these effects i n practice, let's load another program :

LOAD "TRACE "

This program lets you d raw a picture on the screen using the cursor keys (you don't need to ho ld
S H I FT th is t ime, just press the 6 key to d raw a l ine down, 8 to d raw across to the right, etc) . As you ho ld
the key down, a cont inuous b lack l i ne starting from the top left-hand corner is d rawn . I f you take your
f inger off the key, the l i ne stops as wel l , so you can d raw nice p ictures i n tracing fash ion on the screen.

I f you press the C key, the screen is cleared down aga in , but the l ine wi l l sti l l carry on from where i t
left off. I f you press the X key, you stop the program.

Note that i f you have a basic ZX81 (without the 1 6K RAM expansion pack, then your "drawing board"
wi l l on ly fit about two-th i rds across the screen, and two-th i rds down the screen.

Whenever the l i ne reaches the edge of the "board" , it stops and waits for you to change d i rectio n .
Now try runn ing t h e p rogram in fast mode. Although t h e p ictu re is being d rawn a t four t imes the

speed, you can't see it ! The only way of seeing the picture you 've d rawn is by pressing the B R EAK key,
or press ing the X key (which is i nterpreted as "stop" by the program) .

Obvious ly, as you write any p rogram, you must decide which mode the ZX8 1 is to run in , and enter a
l ine i nto the early part of the p rogram to select the mode, for example :

1 0 REM CALCU LATE P R I M E N U M B E RS
20 FAST
30 PRINT " ENTER START N U M B E R"

It is worth mentioning that FAST and SLOW are frequently used as commands for i mmediate mode
execution as well as statements with in p rograms.

5.2/2 WHEN T HE DISPLAY IS SHOWN

When runn ing i n fast mode, the screen wi l l be d isplayed only u nder the following c ircumstances :

(a) when an INPUT com ma nd is met

(b) when a PAUSE com mand is met (we' l l see more on this in another section)

(c) when a STOP com mand is met

(d) whenever an e rror occurs. This also includes "end of p rogram" condit ion error 0

97

Chapter 5

So there are many ways of seeing the screen i n fast mode, but the program must be written with th is
in mind.

Whenever you switch the ZX8 1 on, it automatical ly comes up in normal (or SLOW) mode, which is
a lso cal led " compute-and-display" mode.

For now, do not pay too much attention to the l isting of the program "TRAC E " . I t makes use of
several features that we wi l l be meeting over the cou rse of the next few chapters, and you wi l l have an
opportun ity to look at this program in a lot more deta i l later on .

Question

(a) In which mode does the screen go blank?

(b) When would you use SLOW, or "compute-and-display" mode?

98

,)

_)

Chapter 5

) Answer

)

)

(a) Fast

(b) When you want the results of a program to be displayed whi le the program is runn ing .

I f your answers were wrong, read the whole of section 5 .2 " Runn ing Modes" over again .

5.3 MAKING USE OF THE DISPLAY FACILITIES

5.3/ 1 C LEARING THE SC REEN

Now let's look at the screen d isplay in a b i t more deta i l .
One problem that we had i n the " P R I M ES" program was that of report 5 . Whenever 22 l i nes of the

program were d isplayed on the screen , report 5 cropped up, and we could only start the prog ram again
by us ing CONT to continue runn ing . I t would be nice if in some way, the program could keep tabs on
how many l ines have been displayed, and stop the p rogram from runn ing or, better sti l l . whenever a
new set of numbers is entered, the screen wou ld be clea red before the pr ime numbers a re p rinted. That
way, although report 5 may sti l l appear when the screen is fu l l , at least the maximum n umber of primes
wi l l have a l ready been shown.

The answer is a command CLS.
Th is com mand, when met i n a p rogram, clears the screen back to blank again . It does not affect the

value of any va riables that may have been created , it purely acts on the display.
A classic use of CLS is when checking values that a re being i nput. Look at this progra m :

Question

1 0 PRINT " ENTE R A N U M B E R (1 -5)" ;
20 INPUT VALUE
30 PRINT VALU E
40 IF VALUE>0 AND VALUE<6 THEN GOTO 1 00
50 PRINT " I ASKED FOR 1 TO 5 . TRY AGAI N . "
6 0 GOTO 1 0

Can you spot a problem with th is prog ra m ? (h int : try run ni ng it on your ZX8 1 and enter i nval id n umbers .)

99

Chapter 5

Answer
If 1 1 i nval id numbers a re entered in a row, the program stops with error 5 - the screen has become fu l l
of nasty l ittle messages.

Obviously, it would be much better if the screen wasn't cluttered up with our attempts to get a
correct value i n . We sti l l want to see what we've entered when a proper va lue is i nput, but it doesn't
matter too much if we lose the screen after a wrong value has been entered .

Question
What l ine would you add i nto the program above to stop the screen f i l l ing up when a stream of i nva l id
numbers a re entered ? What l ine number would you use? Th ink careful ly about the l ine number - try to
see why by runn ing the program.

1 00

)

)

Chapter 5

Answer
A command CLS is requ i red. Where?

I f your solution was :

45 CLS

then well done. I n fact, any l ine number between l ines 40 and 50 wi l l do .
I f you had a d ifferent l i ne number, then let 's see why it wi l l not work p roperly.
There are many places that the l i ne could go, and here are one or two with the reason why it wi l l not

work properly.

1 5 CLS the message which lets us know what is to be entered is lost.

55 CLS the message informing us of the error is lost.

35 CLS if a correct va lue is entered , it is not shown on the screen .

Try each o f these t o see why they are wrong.
Perhaps a d ifferent way of writing the program in the fi rst place would help? That's probably true, and

here is one way -

1 0 PRINT " E NTER A N U M B E R (1 -5)" ;
20 INPUT VAL U E
3 0 PRINT VAL U E
4 0 IF VALUE>0 A N D VALUE<6 THEN GOTO 1 00
50 CLS
60 PRINT VALU E ; " ? WHAT I S THAT?"
70 GOTO 1 0

This way, we lose one l i ne of the d isplay if an incorrect value is entered , but should further incorrect
values be entered , then st i l l only one l i ne is lost, s ince the CLS command wi l l keep the nasty messages
down to a s ing le l i ne . Also, the incorrect va lue is pri nted in the error l ine. This is a lways a good idea as it
remi nds you of what you have entered - it's a lways n ice to be able to say "Oh , I k.now what I 've done ! " .

CLS can be used in immediate mode, in which case it moves the pr int position to the top left-hand
corner of the screen .

5.3/2 PRINTING AT A S PEC I F IED POSITION

Wouldn 't it be helpfu l if we could actua l ly format our screen? By this is meant that we would be able to
print items at any position on the screen . Wel l . we can .

What d o w e know s o far about the PRINT command? We know that w e can print any numbe r of
expressions that are sepa rated by either commas (pr int items in "zones") or by semi-colons (next
expression is to fol low th is one with no spaces between) .

We can a lso include text (or "stri ngs") i n the print .
So, one way of putting items on the screen is to use a success ion of PRINT commands to p rint

someth ing on (say) the fourth l i ne down on the screen .
Here's a sma l l p rogram that p rints the word " H E LLO" i n the middle of the screen.

1 0 FOR Y = 1 TO 1 2
20 PRINT
30 NEXT Y
40 PRINT "

9999 STOP
H ELLO"

1 0 1

Chapter 5

Lines 1 0 to 30 print 1 2 blank l i nes to space down the screen, and l ine 40 prints the word " H E LLO" i n
the middle of the next l ine .

Th is is a l l very wel l , but it does seem a b i t wastefu l . doesn't i t?
We can a lter the next p rint position at any t ime we l ike by putting

AT y,x

in the PRINT command as an item to be printed. AT is a function, so it requ i res the usual two keystrokes
to get it - fi rst, S H I FT/N EWL INE to tel l the ZX8 1 that you want a function, then the "C" key on the
bottom row. This wil l g ive AT.

AT doesn 't actua l ly pr int anything at a l l - it just moves the print position to l ine number y, character
position x.

Here's an example :

PRINT AT 1 2, 1 3 ; " H E LLO"

Try it.
That s ing le l i ne replaces the prog ram g iven above. I t a lso prints " H E LLO" in the midd le of the screen .
Notice the semi-colon after AT 1 2 , 1 3 ; - if anything e lse fol lowed i t (l ike a com ma, o r nothing at a l l)

then the pr int position wou ld be moved on aga in , wh ich wou ld rather defeat the pu rpose of us ing AT i n
the fi rst place !

Any number of AT functions can appear in a PRINT statement, but remember that any comma that
fol lows wi l l force the next field across to the next "zone" on the screen , and any PRINT command that
is terminated without a comma or semi-colon at the end wi l l cause an extra l i ne to be added .

Also, you should remember that the first l i ne on the screen is represented by l i ne number 0, and the
fi rst colu m n on the screen is column numbe r 0.

So the top left-hand corner of the screen would be given by:

PRINT AT 0, 0 ; "X"

The bottom right-hand corner i s :

PRINT AT 2 1 , 3 1 ; "X"

If you always remember that "AT y,x" is treated j ust l i ke an expression, except that nothing is printed ,
then a l l the othe r ru les of the PRINT com mand app ly as normal .

Question
Write a single l i ne that prints the letter A in the top right-hand corner of the screen , and also prints the
letter Z at the bottom left-hand corner of the screen .

1 02

)

)

Chapter 5

Answer
PRINT AT 0,31 ; "A" ; AT 2 1 ,0 ; "Z"

I f your answer was wrong, then read section 5 .3/2 again .

5.3/3 TAB ULATING PR I NT

By now you ' re probably catching on that wherever you see a number in a command or function, l i ke the
AT function, then it can be ehtered as any numeric expression.

The l ine number and column number in the AT command can be any numeric expression at a l l , so
val id statements would be :

PRINT AT LUCKY/3, LUCKY+4 ; " H ERE WE ARE"
PRINT " F I RST" ; AT (L I N E -2)/2 ,COL+4; "SECOND"

AT is on ly va l id as part of a PRINT com mand. I f you try to use it for anyth i ng e lse, l i ke LET X=AT 9 , 5
then you ' l l get a syntax error. It doesn't make sense in other commands anyway.

) Here's an example of how to use AT to pr int the numbers from 1 to 9 backwards. Type it i n and run i t :

)

)

1 0 FOR N = 1 TO 9
20 PRINT AT 1 0,9 - N ; N ;
30 NEXT N

(notice a l l the semi-colons !)

Before we leave the formatting power of the AT function, there i s one other function that al lows u s to
present display l i nes in an o rdered fashion. This t ime, however, it is only concerned with the current l i ne .
The function is

TAB n

where n represents the column nu mber that you want the next item printed in . Obviously, this function
should be fol lowed by a semi-colon - as is AT - otherwise there is no real point in moving the pr int
position across to a specif ied column n umber! H ere's an example of TAB i n use:

1 0 PRINT " H l " ; TAB 24; "TH E R E "

I f you ru n this s ingle l ine program, you ' l l see someth ing l i ke :

H I TH E R E

and the word TH E R E would start in column 2 4 o n the display. The value of n can be any numeric
expression - a lso the same as AT, but the real d ifference is that TAB does not need to be told which l i ne
number to move to -,- on ly which column nu mber.

If the column number in a TAB function has a l ready been passed by other pr inted i tems, then the
ZX81 moves down to pr int the next item in the correct position on the next line down, so be careful that
you know where you a re when you use TAB. If the l i ne above was changed to :

1 0 PRINT " H l " ; TAB 1 ; "TH E R E "

the ZX8 1 would pr int th is out as :

H I
THERE

since the colu m n 1 i n the TAB function has a l ready been passed.
The va lue that fol lows TAB should be in the range 0 to 3 1 (i nc lusive) . I f any h igher values are used, the

ZX81 takes the remainder after dividing by 32 as the TAB va lue. As an example, TAB 67 would tab over
to column 3, s ince 67 d ivided by 32 leaves remainder 3 . (In mathematical terms, th is is cal led modulus
32).

1 03

Chapter 5

Strictly speaking, AT and TAB are no.t functions at a l l s ince they do not g ive any value as a resu lt .
Because they appea r on the underneath of the C and P keys, they are obta ined i n the same way as
functions and th is is how they wi l l be referred to later on .

Question
Write a smal l p rogram that takes in a number from the keyboard, checks that the nu mber is between 0
and 20, then prints the word " H ELLO " in that column on the fi rst l i ne of the screen .

1 04

)

)

)

)

)

)

Answer
You could use either the AT or TAB functions to handle this - here 's one solution :

1 0 PRINT " E NTER A N U M B E R ;
2 0 INPUT N U M B ER
30 IF N U M B E R > = 0 AND N U M B ER<=20 THEN GOTO 1 00
40 CLS
50 PRINT N U M B E R ; " ? YUK. TRY AGAI N . "
60 GOTO 20

1 00 CLS
1 1 0 PRINT TAB N U M B E R ; " H E LLO"

9999 STOP

You cou ld replace l ine 1 1 0 by:

1 1 0 PRINT AT 0, N U M B E R ; " H ELLO"

Chapter 5

Did your solution work? You ' re getting on qu ite well if it d id . If not, then try read ing that last section
aga in - section 5.3/3 .

5.3/4 S C R O L LING THE DIS P LAY

Another command which makes good use of the d isplay i s the command

SCROLL (on the B key)

Before video-type d isp lays were used on computers, a device ca l led a Teletype (brand name) was
used, which was basica l ly s im i la r to a typewriter, a lthough it could be computer control led, and the
computer could type messages to the operator and vice versa .

Because of the popularity and flexib i l ity of these devices, most video-based computer systems st i l l
use this method of pr int ing information - a l ine at a t ime, and each new l ine pushes the previous ones
up, with the new l ine appearing at the foot of the screen . I t is cal led scrolling.

The problem with video systems is that a screen on ly has a l i m ited number of l i nes that can be seen at
any one t ime - on the ZX8 1 it is 24 (although two a re reserved for the ZX8 1 itself), whereas the printed
paper on a Teletype cou ld be any length at a l l ! So a video screen has to lose l i nes once they reach the
top of the screen .

Let's see an example of th is .

LOAD "SCROLLER"

Th is smal l progra m demonstrates how the SCROLL command can be used to make the ZX81 work
just l i ke the old Teletypes .

Whenever the ZX81 sees a SCROLL com mand, it moves every l i ne on the d isplay up one l i ne , leaves
the bottom l ine b lank, and moves the print position to the start of this b lank l ine .

Run the "SCROLLE R" p rogram to see how it works . You ' l l see each l ine sh ifting up one each tim e .
Watch what happens when t h e l i nes get t o t h e top.

The only way to stop the program is by . . .

Question
What?

1 05

Chapter 5

Answer
If you said (or d id !) " Pu l l out the plug", then no marks. Your answer should have been :

"Press the B R EAK key" . This was covered in Chapter 3 .

LIST the p rog ram . I expect you can work i t a l l out for yourse lf, but the important l ines a re l ines 1 00 and
1 1 0 .

L ine 1 00 scro l ls the who le d isplay up one l i ne , leaving a b lank l i ne at the bottom, and losing one off the
top.

Line 1 1 0 prints a new l ine at the foot of the (usable) d isp lay - l ine number 2 1 .
So if you want to write a program l ike the " PR I M ES" p rogram, you could use someth ing l ike this to

accompl ish it . Before you pr int anything, inc lude a SCROLL com mand. The fol lowing PRINT statement
wi l l automati·cal ly appear at the foot of the screen.

As mentioned, the " P R I M ES " program wou ld have been a good candidate for th is type of printing,
because the report 5 wou ld never a rise .

5.3/5 A SECOND EXAMP LE

For those with a mathematical mind, here's a pretty program that draws a cont inuous s ine wave down
the screen . It combines severa l of the points we've covered in this chapter so far, and it 's worth typing
in and run n ing purely to see them al l i n use.

1 0 LET A=0
20 SCROLL
30 PRINT TAB (INT (SIN A* 1 5 + 1 6 . 5)) ; "X"
40 LET A=A+(P l/2)/5 (P l is given as a function on the M key)
50 GOTO 20

We're not going to u n ravel th is particu lar program - it 's up to you if you feel you would l i ke to.
Although it may appear q u ite complex, if you understand the natu re of trigonometry, sines and rad ians,
then it' l l pose you no real p roblem !

Question
(a) If you saw the statement PRINT AT 5, 1 0 ; " H ELLO", on wh ich l ine of the screen would you expect

the word to appear?

(b) And in which col u m n ?

(c) What i s t h e nu mber o f t h e fi rst d isplay l i n e o n the screen ?

(d) Name three ways i n which the screen can be seen when the ZX81 is run ning i n FAST mode.

1 06

)

)

Chapter 5

.) Answers

)

\
j

(a) Line number 5

(b) Column number 1 0

(c) Line number 0

(d) Any three of these four :
- an INPUT statement
- a STOP statement
- a PAUSE statement
- when any report code is given

If your answer to (a). (b) or (c) was wrong, then you should read back over sections 5 .3/2 and 5 .3/3 .
If you got (d) wrong then read section 5.2 " Runn ing Modes" aga in .

5�3/6 DELIBERATE PROG RAM DELAYS

There are obviously going to be occasions when a program running in fast mode wants to show some
results that have been calcu lated , then continue without any sort of i ntervention.

For example, the s ine-wave drawing prog ram g iven above wil l not work in fast mode as it stands,
because the screen goes b lank .

Fortunately, a com ma nd has been set up in the ZX8 1 that al lows you temporari ly to stop a prog ram
that is runn ing in FAST mode and show the d isplay. The command is

PAUSE n

where n represents a numeric expression that tel ls the ZX81 how long you want the program to pause
for. I f n is 50, then the ZX8 1 will pause for one second. You can make the ZX81 stop for any length of
t ime that you wish - up to a maximum of roughly 1 1 m i nutes, since the top l imit of n is 32767 . If n is
larger than this , the ZX81 wil l "pause" forever.

Whenever the PAUSE statement is used in a prog ram runn ing in FAST mode, it must always be
fol lowed by the statement :

POKE 1 6437 ,255 (POKE is on the 0 key)

otherwise the program wi l l probably fa i l when it is ru n . For the t ime being, you wi l l have to accept th is -
a later chapter wi l l explain th is new command in more deta i l .

By adding in two new l ine numbers, 45 and 46, to the s ine-wave program, we can make i t work in fast
mode :

45 PAUSE 25
46 POKE 1 6437 ,255

(a ha lf-second pause)
(to stop PAUSE fai l i ng)

The prog ram wil l st i l l work in s low mode, but to a large extent, the PAUSE com mand is wasted, s ince
you can a l ready see the resu lts !

One use of PAUSE i n s low mode is when you want to put a smal l delay in the prog ram to s low the
whole thing down - l i ke a game program where you on ly want to a l low your player a certai n length of
t ime to see someth ing on the screen.

A s ide effect of the PAUSE com mand which can be usefu l is that the command is f in ished when
either the t ime (specified by n above) has elapsed, or a key is pressed. This can be put to good use in
some programs.

1 07

Chapter 5

Try this example to see how PAUSE can be used in FAST mode :

5 FAST
1 0 FOR X = 0 TO 1 5
20 PRINT AT 1 0,X; " > "
3 0 PAUSE 2 5
4 0 POKE 1 6437 ,255 (must fol low PAUSE)
50 PRINT AT 1 0 ,31 - X ; "<"
60 PAUSE 25
70 POKE 1 6437 ,255
80 NEXT X
90 PRINT AT 1 0, 1 4 ; " BANG"

The program can be a ltered to run in SLOW mode by changing l ine 5 (change it to SLOW), and
removing l i nes 30 , 40 , 60 and 70. Now try i t agai n .

Here's a s im i la r type o f program that wi l l g ive you a laugh :

5 SLOW
1 0 FOR X=0 TO 26
20 PRINT AT 1 0,X; " .TRAI N" (don't forget the " . ")
30 PRINT AT 1 0,26 ; "TU N N E L"
40 IF X<>0 THEN GOTO 70
50 PRINT AT 0, 0 ; " P R ESS N EWL I N E WHEN R EADY"
60 PAUSE 40000 (wait forever ti l l key is pressed)
70 NEXT X

The POKE was not needed in this example as the ZX81 is used in SLOW mode.

Question
Write a program that d rops a man from an aeroplane down to the ground. The man should jump when a
key is pressed . You can use the letter "Y" to denote the man coming down, and a row of hyphens
(SH I FT/J) to denote the ground . I f you can manage it, then t ry to make the program wipe out the "trai l "
that the man leaves as he comes down.

1 08

)

)

'
)

)

Answer
My solution is (try it if you l ike !) :

1 0 PRINT AT 2 1 , 1 4 ; "---

20 FOR Y=0 TO 2 1
3 0 PRINT AT Y, 1 6 ; "Y"
40 IF Y <>0 THEN GOTO 80
50 PRINT AT 0, 1 4 ; " PLAN E "
6 0 PAUSE 40000
70 GOTO 90
80 PRINT AT Y - 1 , 1 6 ; " "
90 NEXT Y

1 00 PRINT AT 2 1 , 1 4 ; "SPLAT"

(draw ground)
(for each l ine on screen)
(d raw man)
(skip after 1 st t ime)
(draw plane in sky)
(wait for a key)
(continue)
(remove "tra i l ")
(next l ine)
(better luck next t ime)

Chapter 5

You should read section 5 .3/2 if you had t rouble us ing AT (or you cou ld have used TAB, in which case
read section 5 .3/3) , and section 5 .3/6 if you could not get the PAUSE com mand to work properly.

5.3/7 USING GRAPHIC CHARACTERS

This section wi l l only serve as an introd uction to graphics . You ' l l be able to make much more use of
graph ics when you 've covered a few more chapters, but for now, it's enough to see how graphics can
be used as part of PRINT commands.

As a smal l demonstration, load this progra m :

LOAD "P ICTU R E "

a n d r u n i t . Isn 't that pretty? When you 've got bored with it, press the B R EAK key a n d look a t the
program l ist ing.

As we've said before, whenever you print text or as it's properly ca l led , a string, you can pr int
anyth ing you want between the quotes characters. So you can pr int numbers, letters , or these funny
symbols ca l led graphic characters.

How do you get at them ?
Simple . By pressing S H I FT/9 (the 9 key has the word "G RAPH ICS" in red) , you ' l l fi rst of a l l notice that

the cursor changes to a [!I.
Let's try it. Type :
PRINT " and then press the G RAPH ICS key (SH I FT/9) . At this point, the cursor a lters as described.

You should see on you r screen :

PRINT "[!l

Now, whenever the [!) symbol i s showing, any letter o r nu mber key that you press wi l l b e shown as
white on a black background, instead of the usual black on white. Some of the keys, the keys whose
S H I FT codes g ive whole words or mu lt ip le symbols (l i ke S H I FT/S which norma l ly g ives LPR I NT), wi l l
now give you spec ia l graphics characters a s shown o n the key i n the lower right-hand corner of the key.

The keys that do not have these specia l g raphics codes wi l l a lways give the " inverse" (that's white on
black) of the key, or of the S H I FTed key if S H I FT is used .

Try typing a few i n to see what you get. Try S H I FT/S, and S H I FT/C, and just the ord inary keys without
S H I FT.

When you've typed a few, you ' l l need to get out of g raph ics mode so that you can type the " character
needed to f in ish the text string off. But how? Whenever you type the quotes character, you just get an
inverse quotes ! The answer is to press S H I FT/9 aga in . Th is cancels the graph ics mode, and returns you
to the usual " letters " mode that you ' re used to.

Now you can put in the " that is needed , and then N EWLI NE wi l l cause the ZX8 1 to accept the l i ne .
This is how the P ICTU R E program was created - the black boxes are created by G RAPH I C/S PACE ,

the other symbols were a l l c reated from the special characters given on the A S and 0 keys .

1 09

Chapter 5

Question
Write down the keys you need to press to pr int the fol lowing symbols :

(a) an i nverse P

(b) inverse

(c) � black box

(d) (no answer to this part !) Try to th ink of the appropriate characters to use in o rder to print the
picture of a spacesh ip .

1 1 0

)

)

)

Answers

(a) S H I FT/9
p

(b) S H I FT/9

(c) S H I FT/9
S H I FT/O

(to get into graph ics)

(to get into graph ics)
(SH I FT/P)

(to get into graph ics)
(to get the box)

Chapter 5

If you cou ldn't work them out, then read section 5.3/7 aga in , and try to get used to the graphics mode
a bit more by experiment ing .

5 .4 THE ZX PRINTER

I f you ' re lucky enough to have afforded a pr inter to go with your ZX8 1 then here's the section for you !
The section i s rea l ly i nformation only, since a l l of these features have to a large extent been covered i n
other ways.

There are three com mands that a re relevant - mostly they are s imi lar to other commands.
The fi rst is :

LUST (no it's not Welsh !)

You ' l l f ind it by pressing S H I FT/G .
Th is com mand works i n exactly the same way a s LIST - only i t l ists the program onto the printer! You

can l i st the whole program or just from a particu lar l i ne by stati ng LUST nnnn (where nnnn is the
particu lar l ine number you ' re i nterested in) .

This com mand is a good way of keeping a " hard copy" of your programs.
Another usefu l printer command is :

COPY (on the Z key)

This com mand a l lows you to put a copy of whatever's on the screen onto the p rinter. So if you 've just
run a program and you ' re particula rly keen to keep a copy of the resu lts, then press COPY.

The printer even g ives you a l l the n ice graphic characters too !
· ' The last com mand for the p rinter is :
)

LPRINT (SH I FT/S)

As you m ight a l ready expect, th is command is equ ivalent to the normal PRINT command except, of
course, the pr int ing is sent to the printer instead of the TV.

The re are a couple of smal l points to watch out for with this command, however.
The AT faci l ity of the usual PRINT command wi l l sti l l work, a lthough the l ine number f ield has no

effect. You should g ive th is a va lue of zero . Here's an example :

1 0 LPRINT AT 0, 1 3 ; " H E LLO"

If the l ine number is not zero, then it wil l mostly be ignored, but you may get an error if it 's greater
than 2 1 , so play safe and keep it at zero.

The printer can be a very valuable tool and if you 've got one, the best way of f ind ing out how to use it
is to try writ ing some of the futu re p rograms with LPRINT commands instead of PRINT com mands.

Al l the printer com mands can be used as immediate mode commands as wel l as program stateme nts
- in fact, the COPY com mand wi l l probably be used most freq uently i n this way.

Summary
This chapter has largely been concerned with making the most of you r d isplay u nder the two modes of
runn ing : normal (or SLOW) and FAST.

1 1 1

Chapter 5

The need to design you r programs around the featu res of SLOW/FAST was high l ighted .
I n the next chapter, we' l l f ind out how to use the cassette recorder to save prog rams, and how to

make the most of you r own prog ram l ibraries .
Here's a summary of this chapter :

- you've seen how condit ional expressions a re not just confined to the IF com mand, but can be used
i n a LET command to assign a condit ional va lue to a variable.

- how the ZX81 can run in two modes - SLOW and FAST - and how you can make the most out of
them.

- that there a re many ways of creating an attractive display, us ing the AT and TAB options, or using
graphic characters embedded in text strings.

- how the ZX printer can be control led .

Exercises

1 . Print successive va lues of n ! (factorial n) unt i l overflow (error report 6) occurs . This wi l l d i rect you
towards the largest va lue that the ZX8 1 can hold (see exercise (3) in Chapter 1) .

n ! i s calcu lated as :

n* (n- 1) * (n-2) * 4*3*2* 1

such that 3 ! = 6 (i . e . 3*2* 1) and 4 ! =24 (i . e . 4*3 !) . You wi l l p robably need to use FAST mode to
handle this p rog ram, and d isplay resu lts using what?

2 . Write a program that asks for a number between 1 and 1 00 to be entered . A second person must
now try to guess this number whi le the program repl ies "TOO H I G H " or "TOO LOW" in reply to the
various guesses . Make use of the print formatting features to give a good presentation of the
prog ram's responses .

1 1 2

)

)

0

0

u

) Using the Cassette

Chapter 6

By now, it has started to become im portant for you to be able to save your programs on cassette tape.
Most of the programs you have written so far have only been a few l ines long, and have not rea l ly been
worth saving anyway.

This chapter i s of a total ly different nature from the others ; there are few questions asked, and mostly
the text consists of advice, h ints and tips to make sure that your programs wil l be kept with the
min imum nu mber of troubles.

Before we start writing prog rams of m uch larger size, we' l l learn how to use the cassette properly -
this way it 's up to you to decide whether or not you want to save a program that you've just written .

6. 1 WHY SAVE PROGRAMS?

There is a very good reason for saving programs on tape.
Security. Not that any burglar wou ld be i nterested, but so that you don't have to type the whole th ing

in aga in !
What happens i f the dog trips over the mains lead just after you 've spent an hour typing i n your brand

) new program ? I can assure you it wi l l happen - and the t ime that it happens wi l l be the t ime when you
/ have thought "Oh , I won ' t bother for now" .

Also, what happens if the f irst t ime you run the prog ram , it goes wrong, and you can't get back into i t?
The only th i ng to do i s load i t aga in - but i f you haven't saved it beforehand, then you ' re i n trouble .

A LWAYS SAVE A N EW PROG RAM BEFORE YOU R U N IT.

6.2 SETTING UP THE CASSETTE

Let's consider the con nections we need .
Suppl ied with you r new ZX8 1 were two leads - the double lead is the one that connects to you r

cassette recorde r, and you probably have one of the leads plugged into the "ear" socket a l ready.
Connect the other ha lf of the double lead into the "m ic" socket of the recorder, and into the socket

marked " M IC" on the ZX8 1 .
Now find you rself a b lank cassette .
Wind i t on so that the start of the proper tape material i s showing (just past the leader tape) , and insert

it i nto the cassette recorder.

) Type i n th is smal l p rogra m :

1 0 FOR Y=0 TO 2 1
2 0 PRINT AT Y , 1 O ; "WE L L D O N E "
3 0 NEXT Y

What we' re about to do is to put th is program onto you r tape and try to get it back i n again . The reason
for us ing a sma l l p rogram l i ke th is is so that you don't have a lot of typing to do if it fai ls !

The command to get the ZX81 to put the program out is

SAVE "program name" (don't do it yet !)

where "prog ra m name" can b e anyth ing you l i ke to ca l l the program by.
When you come to LOAD the prog ram again, th is is the name that you will have to use.
We' re going to ca l l our prog ram "TESTE R " for now . Type the fol lowing, but DON'T type the

NEWL I N E just yet .

SAVE "TESTE R "

) Now start the cassette off as if you were recording something through the m icrophone. Once the
cassette has sta rted, p ress N EWLI N E .

Then sit a n d watch . You should see something l ike th is :

1 1 5

Chapter 6

The screen in itia l ly goes bla n k for five seconds, and then it goes berserk for a period of t ime. Th is
period depends on how big your p rogram is . I f you are not us ing a 1 6K RAM pack, then i t wi l l not be any
longer than 30 seconds. With a 1 6K RAM pac k attached, it can be anyth ing up to 7 or 8 minutes, but th is
would on ly be for an extremely large prog ram ! Our TESTE R program wi l l only take about ten seconds .

Eventual ly, the screen shows our o ld faithful message :

0/0

which means that the program is on the tape. Leave the recorder runn ing for a further 5 to 1 0 seconds
before you switch it off . There is a very good reason for this, which we'l l see later on.

Time for the fun. At th is point, we have our only copy of the program ins ide the ZX81 , and we don't
yet know if the tape is recorded properly.

Question
How can we check that the tape is OK without losing the only copy of the p rogram that we have got ­

the one i ns ide the ZX8 1 ?

1 1 6

)

)

)

Answer
We can 't .

Chapter 6

Th is m ight sound a bit harsh , but the only foolproof way of checking the tape is to try to load the
prog ram in the way that we've always done so far . The only trouble is that load ing a program from tape
destroys whatever is ins ide the ZX8 1 , so if the tape hasn't been recorded properly, you lose the prog ram
completely.

Now you can see why the prog ram we've experimented on is only a few l ines long !

6.3 GUIDELINES

So how can we m in im ise the chances ?
We can reduce the l i k l ihood of losing a program to a l most n i l . . .

if you follow these guidelines.
1 . Always, always, check that the leads a re connected to the correct sockets before you start. The ZX8 1

can not tel l you that you 've pushed them into t h e wrong holes, s o you 've got t o check them. I f the
leads a re not connected, you won't be able to tel l by looking at the screen - the ZX8 1 carries on qu ite
happi ly .

2 . Make sure that you ' re using decent tapes. I t 's no good using these "cheapies" - they aren't m a n
enough (person enough?) t o take t h e s ignal requ i red by t h e ZX81 . You can buy special computer
tapes from computer shops (or ma i l order - see the monthly computer magazines) for not much
more than ord inary tapes, a lthough ord inary low-noise tapes wi l l su rfice. I n practice, they work out
cheaper, s ince you on ly buy C 1 2 tapes i nstead of C60. We' l l see why th is i s better i n another sectio n .

3. Make sure t h e tape i s positioned correctly. I f you ' re starting a new tape, t h e oxide tape should b e in
view - you m ight start recordi ng over the leader tape, and that means the ZX8 1 won't be ab le to
recognise the program when you com e to load it agai n .

4. Leave the cassette running for 5 to 1 0 seconds after the ZX81 has f in ished.

5 . I f th is is the f i rst t ime that you ' re saving a program , t ry these two tips :
(i) save the prog ram twice. If your tape has some oxide d rop-out in the early few inches, then at

least the second copy should be OK .
(i i) when you 've saved it twice, l isten to the tape through the loudspeaker (don't forget to adjust the

volume before and after) . You should hear five seconds of s i lence (as you p ressed the N EWLI N E
key), fol lowed by a sound which has earned the n ickname " a supercharged bu mblebee" (as
mentioned i n the orig ina l ZXBO manua l) . This is an excel lent description of the noise you should
hear . When th is subsides, you ' l l hear 5 to 1 0 seconds of a l ight "buzz ing" noise, which is where
the recorder was left runn ing for a bit . If you hear th is , then you ' re probably going to be a l l r ight. I f
not, then check back over the leads and try aga in .

6.4 CHECKING THE TAPE

Adjust the volume and tone controls ready for loading, rewind the tape back to the beg inn ing , and try to
load you r p rogram in again - just l i ke we have a lways done:

LOAD "TESTER"

Do you get the 0/0 at the foot o f the scree n ? Don't be too impatient - remember how long i t took to
save the progra m , as it wi l l take just as long to load it back in aga in .

I f you ' re carefu l , you can watch the screen whi le the p rog ram is load ing, and recognise the periods of
5 seconds s i lence, and the t ime whi le the "supercharged bumblebee" is being p layed . The actual
screen varies from one TV to another, so I can 't help you m uch more than to say that if you watch, you ' l l
learn to recogn ise you r own TV's p icture wh i le load ing programs .

I f noth ing happens after a couple of m inutes, then something has obviously gone wrong. Press
B REAK to stop the ZX8 1 . Check a l l the leads, then try the whole th ing over aga in . I f you still have trouble

1 1 7

Chapter 6

(and th is would be fai rly rare by now) then consult the section at the end of th is book entitled "Common
Problems and Solutions' ' .

Run the program to check that it works - it should pri nt "WE LL DONE" down the middle of the
screen .

6.5 LOADING AN 11U NKNOWN" PROGRAM

So what happens if you can 't remember the name of a particu lar prog ra m ?
A l l is not lost - the ZX8 1 a l lows you t o load a prog ram without specifying a name, a n d when you do

this, the ZX81 loads the first program that it comes to on the tape.
For example. you can type :

LOAD ""

to load the program that you saved earl ier .
I f the p rogram is in the m iddle of a p rogram l ibra ry tape (you ' l l see what this is i n the next section) ,

then it's not qu ite so easy. F i rst you must get to the beginn ing of the program, and the best way of doing
this is to l i sten to the tape through the loudspeaker.

Each p rogram has a gap of five seconds s i lence in front of it (section 6.3 covered the sound of a tape) .
and so if you l isten to the tape, count ing each gap as it comes a long, you can fai rly easi ly reach the
beginn ing of any p rogram on the tape.

Stop the recorder once the gap has started before the program you wish to load . then type

LOAD " "

and carry on loading t h e program as norma l .

6.6 PROGRAM LIBRARIES

So what else can we do with the cassette?
F i rst of a l l you can create a program library. This is a col lection of tapes. each tape conta in i ng several

programs - just l i ke the set of tapes suppl ied with this course.
How do severa l programs come to be on the same tape, then ?

Here's how to do it.

Whenever you a re about to write a new program, a lways use a fresh, blank tape (or keep one tape
aside special ly for temporary storage of new programs) .

Make s u re every tape has a l ist of the programs on each s ide in the correct order.
Save you r new prog ram on the tempora ry tape and test it to make sure it works p roperly. Don 't put it

onto the end of a long tape if you haven't checked it out thoroughly !
Now take the tape that you wish to keep the program on, and load the last program on the tape .
Stop the recorder when 5 to 1 0 seconds have passed after the last program has loaded and given 0/0

at the foot of the screen .
Rewind t h e tape s l ight ly s o that t h e " l ight buzzing" noise can b e heard . Now p u t th is tape t o one s ide .
Load the new program from the tempora ry tape, and save it aga in onto the end of the master tape.
Rewind the master tape and it 's a l l done.

Don't forget to write down either on the tape, or the index card, what you have ca l led the p rogra m . If
you forget the name, then refer to the deta i ls g iven i n section 6 .2 .

When you keep severa l p rograms on one tape, try to l im i t yourself to a max imum of five p rograms per
side - it can be extremely frustrating to wait for the ZX81 to hunt al l the way down a C90 tape ! For the
same reason, it is better to use short tapes (l i ke special C20 tapes) so that the t ime to wind from one
end to the other doesn't seem to d rag q u ite so much .

1 1 8

)

)

Chapter 6

6.7 SAVING VARIABLES

I t is perfectly possible to save a prog ram with a l l the va riables intact.
Let's take an example .

LOAD " EXAM PLE"

L ist the p rogra m . L ines 1 00 to 1 40 set some variables to certain va lues, and l i nes 200 to 240 pr int
them for you to check.

Now run the prog ram . Write the resu lts down on a piece of paper so that you can check them later o n .
List the p rogram aga in , a n d now delete l i nes 1 00, 1 1 0, 1 20, 1 30 a n d 1 40 .

Question
How do you delete program l ines?

A.

B

1 1 9

Chapter 6

Answer
By typing the l i ne number fol lowed by N EWLI N E .
This was covered in Chapter 2, section 2 . 3 "Program Edit ing " .
Set you r recorder u p with a spare cassette, a n d SAVE t h e program (you can choose a n y name you

l i ke) .
The variables have a l l been saved with the program, but just to make sure I have noth ing up my

s leeve . . . switch the ZX81 off and on. This removes everything.
Load you r program back i n aga in , BUT DO NOT RUN IT J UST YET.
One effect of the RUN command is that a l l variables are clea red out before the program starts.
Since we want to keep the variables, we obviously cannot use RUN.
We m u st use GOTO i nstead . This wi l l a l low us to start the program runn ing, but we know from

previous programs that GOTO doesn't remove all the variables !
Type:

GOTO 1

Since l i ne number 1 is the lowest l i ne number possible, th is wi l l always have the effect of starting the
program from the beg inn ing .

What do you get? Al l the variables still print out thei r orig inal values, even though there are no LET
statements in the progra m !

S o i f you write a program that needs to set u p a large number of variables (especia l ly later on when we
deal with "arrays" in more deta i l) , you can remove the LET statements when the program has set them
up (by run ning) , and save the program with preset variables.

By saving a program with variables preset, it means that you can now add extra l i nes i n the program to
replace the LET statements that have been deleted - this means a larger program than you might
otherwise have been able to write.

There is one other command to watch out for under these condit ions :

CLEAR (on the X key)

This command clears any variables that exist at the moment, and is often used in a program which
a l lows you to start again (the " P R I M ES" program could have used CLEAR. although i t wasn't rea l ly
necessary) .

6.8 11LOAD-AND-GO PROGRAMS

One f inal feature before we leave the cassette - you can make a prog ra m start runn ing automatica l ly
when it is loaded from tape. If you i nc lude a SAVE statement within the progra m itself, when the ZX81
meets th is , it saves the program (i n the usua l way) then carries on normal ly with the next l i ne number.
When th is prog ram is re-loaded, however, it wil l a lso carry on at this point. Look at th is :

1 0 PRINT "A L I N E O F TEXT"
20 STOP
30 SAVE " SO M ETH I N G "
4 0 PRINT " H E R E I S " ;
5 0 GOTO 1 0

Start the prog ram by entering RUN 30 (note the l i ne nu mber after the com mand RUN - it tel l s the
ZX81 to start at l ine 30 i nstead of at the beg inn ing of the program) . Before you do, though , start the
cassette recorder off for saving a progra m . After the SAVE com mand on l ine 30 has f in ished, the
program carries on as norma l .

Now load the program back in aga in by entering

LOAD "SOM ETH I N G "

As soon a s the program is loaded, i t starts in exactly the same way ! This i s extremely useful when you
want to save a prog ram with some preset variables - it prevents you from typing RUN by m istake !

1 20

)

)

Chapter 6

Summary
In the next chapter we' l l meet subroutines, a more p rofessional way of writing your programs .
But here's what we've covered in th is chapter :
- how to p repare the recorder for saving prog rams
- why and when you should save programs
- how you can reduce the l i ke l ihood of trouble to a m in imum
- how to create a p rogram l ibra ry
- how variables can be saved on tape a long with a prog ram
- that p rograms can be made to start automatica l ly when they a re loaded .

There a re no exercises for th is chapter.

(' . . .,-
1 0) ,)
!

I

��-'""''=''�

_. . � .. -���

1 2 1

)

/

/

)
, /

Chapter 7

·) Subroutines

)

)

What a pecu l iar tit le for a chapter ! Subroutines ? !
Nea rly a l l of th is chapter i s devoted to this topic, although two smal ler extra sections a re i nc luded

towards the end. As with chapter 4, one p rogram is fol lowed throughout the chapter, gradual ly bu i ld ing
it up i nto a useful visual a id for representing graphs. Section 2 shows how the ZX8 1 can be used to d raw
graphs, while section 3 gives you some useful information about the INPUT com mand .

7. 1 MAKING USE OF SUBROUTIN ES

7. 1 / 1 D E F I N IT I O N O F A SUBROUT I N E

We' l l kick off this chapter with a program that plots a smal l graph, us ing X and Y coord inates entered
from the keyboard . The p rogram is q u ite large - and would be a lmost i m possible to write for a basic
ZX81 without the use of subroutines.

The program d raws horizontal and vertical axes, both 20 un its i n length . It then asks for an X and Y
coordi nate to be entered . These a re checked to make sure that they a re between 0 and 1 9, and do not
have any fractions (or decima l places) . Th is point is then plotted on the g raph . This continues unt i l the
word Q U IT is typed .

So what exactly is a subroutine? H ere's the definition :

It i s a section of a program that can be used many t imes from d ifferent parts of the progra m .
That sounds confusing . Let's g o a b i t deeper.

7. 1 /2 LOOK I NG AT T H E PRO B LEM

To start with, we' l l have a look at th is graph-drawing progra m .

LOAD " G RAPH"

but don't look at the p rogram just yet. R u n i t fi rst.
You ' l l see this :
The p rogram draws the two axes, and then invites you to enter an X coord inate. The number you

enter can be any number from 0 to 20, but without decimal fractions (e .g . 1 0 .33 wou ld not be a l lowed) .
After press ing N EWLI N E, the p rogram asks for a Y coord inate - aga in , you can enter any n u m be r
between 0 a n d 2 0 . This point wi l l then be plotted, a n d the p rogram w i l l ask for more coord inates.

A couple of points to watch out for :
(i) Any points plotted with a coord inate of zero wi l l not be visible, because they l ie on the axis .

(i i) I f you enter an inval id number, the program wi l l ask you to enter the number aga in .

(i i i) When you 've f in ished, type Q U IT, and you ' l l be g iven a report code which stops the progra m .

You ' re going to write th is program b it-by-bit, and we' l l expla in a l l o f the concepts used in i t as w e go
a long . I f you ' re stuck, then you can look at my solution - just l ist the prog ra m ! Don't do that unt i l you've
had a good try.

Ready?

7. 1 /3 A F IR ST ATT EMPT

Let's start with entering the coord inates .

125

Chapter 7

Question
Write a smal l prog ram that asks for two numbers from the keyboard, and checks them to be between

Q) and 1 9 (inc lus ive) and that they have no decimal fract ions.
Don't worry about what l ine numbers you use at the moment, because this program probably won't

last very long !
The fi rst number is cal led "X" and the second number is cal led "Y", so a sample ru n would be :

1 26

X? 5
Y? 27
27?
Y? 3

9/9999

l :)

)

)

Chapter 7

Answer
You should have had no rea l problems writing this, as you 've done a very s imi la r prog ram before ! My

solution is :

1 0 PRINT "X? " ;
20 INPUT X
30 PRINT X
40 IF X>=0 AND X<= 1 9 AND INT X=X THEN GOTO 1 00
50 CLS
60 PRINT X ; " ? "
7 0 GOTO 1 0

1 00 PRINT "Y? " ;
1 1 0 INPUT Y
1 20 PRINT Y
1 30 IF Y> = 0 AND Y< = 1 9 AND INT Y=Y THEN GOTO 200
1 40 CLS
1 50 PRINT Y ; " ? "
1 60 GOTO 1 00
200 STOP

What do you notice about the solution ? For now, I ' l l use my solution to show you what's going o n .
To a certa in extent, t h e program does the same th ing twice - i t prints a message, gets a n u mber,

checks it to be va l id and if it is not va l id , then prints another message and asks for another number .
This is done twice - once for the "X" number, and once for the "Y" nu mber.
We could obviously cut the size of our program down if the routine only needed to be written once -

the capacity of the ZX8 1 is not inf in ite !

Question
Can you write another vers ion of the same program that only dupl icates two or th ree l i nes, i nstead of

6?
The trick obviously involves some sort of devious GOTO, but what?
Don't spend more than 1 0 minutes trying . G ive up and look at the answer if it 's baffl ing you .

1 27

Chapter 7

Answer
You very probably d idn't succeed at that one ! There is a method that would work us ing the idea of

holding a l i ne numbe r i n a variable, then saying GOTO V or someth ing . But it's messy.

7 . 1 /4 GOSUB AND RETURN

The answer is a new com mand

GOSUB n (on the H key)

which works in a s im i la r way to GOTO, but has one very important d ifference.
GOSUB needs a l ine number that tel ls it where the S U B routine i s located so, for example, we could

say :

20 GOSUB 560
or

60 GOSUB LUCKY*7

and the ZX81 wou ld immediately start runn ing program l ines at the new l ine n umber - just l i ke a GOTO
which we met in Chapter 3 .

Here's the d ifference. Whenever the ZX81 sees a GOSUB com mand, it remembers the l i ne number
that it is on now, so if it saw

20 GOSUB 560

it wou ld tuck the l i ne number 20 away for safe keeping. Then it j umps to l ine 560 and carries on in the
usual way.

So what does it want to save l ine number 20 for? This is the beauty - as soon as the ZX81 sees a l i ne
conta in ing the com mand . . .

RETURN (on the Y key)

it recal ls the l i ne n umber that it had put aside, and then automatically goes back to the l ine n u m ber
i mmediately following, and carries on with whatever it was doing there .

Let's take a very smal l example of th is , and look at it i n close deta i l .

1 0 LET N U M B E R = 1 0
20 GOSUB 1 00

,_1---31.........,. 30 LET N U M B E R =33.4
40 GOSUB 1 00

.r-t---i---..,.__ 50 STOP
1 00 PRINT "ANSWER IS " ; N U M BE R *27 . 5
1 1 0 RETURN

The a rrows indicate where the ZX81 jumps to each t ime it comes to a GOSUB and a RETURN.
L ine number 10 merely assigns the value 10 to variable N U M B E R .
Now. L ine 2 0 causes the ZX81 to d o two things. F i rst, the ZX81 puts the number 2 0 t o o n e s ide and

secondly, it goes to l ine 1 00 .
L ine 1 00 prints "ANSW E R IS 275", and then the ZX81 sees l i ne 1 1 0 .
"Ah ! " says the ZX8 1 , "here's a R ETU R N command. I ' l l fetch that number that I put away - now

where is it? - Oh, here it is ! It was l i ne number 20. I ' l l go back to that l i ne again . "
S o the ZX81 comes back t o l i ne 20, a n d carries o n with the next l i n e number, which is l i n e number 30.
Line 30 sets the var iable N U M B E R to the value 33 .4, and l ine 40 once again says GOSUB 1 00 .
By a s im i la r process, the ZX8 1 puts number 40 to one side, and jumps to obey the statement a t l i ne

1 00, wh ich is to pr int another answer us ing the variable N U M BE R .
Line 1 1 Ill , again, recal ls the numbe r that was put aside, but in this case the number i s 40, a n d so the

ZX81 comes back to l i ne 40, d rops through (s ince it has a l ready run l i ne 40), and comes to a STOP
com mand on l i ne 50.

1 28

)

)

)

Chapter 7

7. 1 /5 WHY US E SUB ROUTI N ES ?

What has this program ach ieved ?
It 's saved writing l ine 1 00 twice which, apart from the obvious benefit of avoiding dupl icate l i nes of

program, has other rea l advantages.
Th is prog ram was rea l ly too smal l to gather the fu l l impl ication of GOSUB/RETURN, but l a rger

programs real ly gain a lot from the use of them.
Here a re some reasons why the use of subroutines is recom mended :

1 . S mal ler programs, beca use dup l icate sections of programs can be made com mon i n a subrout ine
(those l ines 1 00 and 1 1 0 in the last example are ca l led a subroutine) .

2 . Easier to test, s ince the su broutine on ly needs to be tested once, and then it works wherever it is
used.

3 . Easier to design a program in the fi rst place, as chunks of program which are related can be put i nto a
subroutine (both menta l ly and physica l ly), and referred to by just a l ine number.

4. Easier to understand when you try to look at the program at a later date. I t doesn't ta ke long for you
to forget your tra in of thought, and us ing subroutines to break you r prog rams up makes it easier to get
back i nto the swing again when you want to make some a lterations .

Question
Re-write the fol lowing program to use a subroutine.

1 0 PRINT " E NTER A N U M B E R " ;
2 0 INPUT N
30 PRINT N
40 LET S = N
50 PRINT " E NTER A N U M B E R " ;
6 0 INPUT N
70 PRINT N
80 IF S = 0 AND N = 0 THEN STOP
90 PRINT S ; " TI M ES " ; N ; " IS " ; S* N

1 00 GOTO 1 0

1 29

Chapter 7

Answer

1 0 GOSUB 200
40 LET S = N
5 0 GOSUB 200
80 IF S=0 AND N =0 THEN STOP
90 PRINT S ; " TI M ES " ; N ; " I S " ; S* N

1 00 GOTO 1 0
200 PRINT " ENTER A N U M B E R " ;
2 1 0 INPUT N
220 PRINT N
230 RETURN

I f you had trouble, then read sections 7 . 1 /3 and 7 . 1 /4 over aga in , and study careful ly through the
examples. Also try ru nn ing some of these smal l programs just to see what they do.

7 . 1 /6 SUBROUT I N E REP LI ES

Now you can probably write the orig ina l program you were asked t o write (take two numbers, etc see
section 7 . 1 /3) in a much more efficient manner, although there is a slight d ifference.

We wanted a d ifferent message printed out to ind icate whether the "X" or "Y" number was to be
entered . What happens if the number entered is i nva l id? Presumably, a l l th is would be i nside the
subroutine since, if you look back to your solution, the l i nes of progra m that check the va lue of "X" and
"Y" are dupl icate l i nes .

The answer is qu ite s imple .
The subroutine needs to set a va riable that can be tested a fter the subroutine has been f in ished. Th is

variable would tel l if the nu mber that was entered from the keyboard was va l id or not.

7 . 1 /7 N EST ED SUBROUT I N ES

An important feature of subroutines is that one subrout ine can cal l another - so our subrouti ne above
could inc lude another GOSUB to a d ifferent (or even the same) subroutine . The ZX8 1 keeps track of the
l ine numbe r, just the same, and wil l a lways come back afterwards. The l im it of this is (almost) end less -
I ' m sure you ' l l run out of steam before the ZX8 1 does ! H ere's an exa mple of nested subroutines (this is
what they' re ca l led) :

1 0 LET P= 1
20 GOSUB 1 00
30 LET P=2
40 GOSUB 1 00
50 STOP

1 00 PRINT "TO B E " ;
1 1 0 I F P= 1 THEN GOSUB 200
1 20 RETURN

200 PRINT "OR NOT " ;
2 1 0 RETURN

set a marker for fi rst t ime
print fi rst ha lf of message
now second time througih
print second part of message
. . . that's a l l

guess what?
if fi rst time, print "OR NOT"
end of subroutine

m iddle section
end of second subroutine

Type this in and run it - you ' l l get a very good insight i nto what happens when one subroutine cal ls
another, and how they never get lost.

Question
Try writing the fi rst question again (from section 7 . 1 /2) . Start your prog ram at l ine number 200,

because future q uestions wi l l need to add some more l i nes i nto this progra m .
Refer back to section 7 . 1 /2 to see what was requ i red .

1 30

)

)

)

Answer
My model answer looks l i ke :

200 PRINT "X? " ;
2 1 0 GOSUB 1 000
220 IF NOT V THEN GOTO 200

230 PRINT "Y? " ;
240 GOSUB 1 000
250 IF NOT V THEN GOTO 230

get X from keyboard
see if it was val id , and if
not, then go back again

now get Y
if i nval id , go back aga in

1 000 INPUT N ask for a number
1 0 1 0 PRINT N print it back
1 020 LET V= 1 th is sets V "true"
1 030 IF N <0 OR N > 1 9 OR INT N < > N THEN LET V=0

1 040 IF V THEN RETURN
1 050 PRINT N ; "?"
1 060 RETURN

th is sets V "false if any
error is found in N
go back if a l l O K
pr int inval id number
go back again

Chapter 7

I n the subroutine at l i ne 1 000, I use a variable ca l led V to ind icate if the num ber from the keyboard is
va l id or not.

Line 1 020 in it ia l ly sets V to "true", and l i ne 1 030 sets V to false if the number entered is inva l id .
When the ZX81 has f in ished the subroutine (i . e . it comes to a RETURN com mand) , the variable V is

tested (l ines 220 and 250) to see if another number needs to be asked for. I f V is false, then another
number m ust be entered .

I don't expect you r answer looked anyth ing l ike mine ! But the important point is , d id you r answer
work? I f it d id , then carry on with the next sect ion.

Let's try to f ind out what went wrong. F i rst of a l l , work your way through my sol ution to see what it is
that you cannot understand . Then look down the l ist of references that fol lows, and read the appropriate
section(s) aga in .

- Can't understand GOSUB and RETURN. Try read i ng th is section once more .

- You can 't u nderstand these compl icated IF statements . This was largely covered in Chapter 3 ,
section 3 .2 "Condit ional Expressions", although there a re further references in section 5 . 1 " Condit ional
Expression Va lues" which a re wel l worth following u p .

- You don't u nderstand th is bus iness o f "true" a n d "fa lse" . Aga in , th is is rea l ly Chapter 3 , section 3 .2
(see above) , but section 5 . 1 wi l l be even more relevant to you , because th i s deals with cond itiona l
expression va lues i n great deta i l . Try aga in .

7. 1 /8 SO M E S L I G HT I M P R OVE M E NTS

By now, you ' re becoming qu ite a master of prog ramming ! For those that a re i nterested. there i s a way
of cutting down the s ize of the p revious answer even more. Section 5 . 1 covered the use of cond it ional
expressions in LET statements, and if we make use of th is , we can make the subrout ine even s ma l ler .

I a m not going to exp la in the logic behind this in deta i l ; if you a re interested, then it shou ld be qu ite
stra ightforward, especia l ly i f you look back to section 5 . 1 - "Conditional Expression Va lues" . I wi l l on ly
write the subrout ine aga in :

1 000 INPUT N
1 0 1 0 PRINT N
1 020 LET V = (N > = 0 AND N < = 1 9 AND INT N = N)
1 030 IF NOT V THEN PRINT N ; " 7 "
1 040 RETURN

That's another two l ines shorter, and does exactly the same th ing !

1 3 1

Chapter 7

7.2 GRAPH PLOTTING

7.2/1 H OW TO START

Now what? We've seen how subroutines can help make our prog rams small , neat and t idy, so we can
go on to create the rest of the orig ina l graph-drawi ng progra m .

Before w e can d o th is , w e need t o learn another pair o f new commands. These commands a l low us
to turn the display into a sort of graph paper, and plot ind ividual squares on the graph paper. The two
commands are :

PLOT (on the Q key)
and

UNPLOT (on the W key)

Both commands need two extra parameters to get them to work. They need to be given an
X-coord inate, and a Y-coordinate, l i ke this :

PLOT x,y UNPLOT x,y

where x and y can be any nu meric expression .
Let's picture the screen as g raph paper l i ke th is :

Col u m ns

An example: this is
the pixel (57,32)

I
0 1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 1 6 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

gi 0

3 1

8

1 32

)

)

)

)

Chapter 7

The imaginary sheet has 64 positions across (in the X or horizontal d i rection) and 44 positions up (in
the Y or vert ica l d i rection) .

These positions a re numbered from 0 to 63 in the X d i rection (the X axis), and 0 to 43 in the Y d i rection
(the Y axis) . Look at the d iagram carefu l ly .

Each of these squares is cal led a pixel.
Notice the d ifference between PLOT and PRINT AT. I n PLOT, the column is given fi rst, and the l i ne

numbers start at 43 for the top of the screen com ing down to 0 at the bottom . I n PRINT AT, the l i ne
number is fi rst and the top l ine of the screen is l ine nu mber 0 coming down to l ine 2 1 .

We can black out any of these squares by using PLOT, giving the X and Y coord inate of the square .
Let's try a couple . Type in th is smal l program :

1 0 INPUT X
20 INPUT Y
30 PLOT X,Y
40 GOTO 1 0

Run the p rogra m . You won't get any n ice prompt messages, because you ' re about to use the whole
screen anyway.

Type in your X-coord i nate (a number between 0 and 63 incl usive), fol lowed by N EWLI N E .
Then enter your Y-coord inate, a number between 0 a n d 43 inclusive . A s soon a s you press NEWLINE,

that square wi l l be "blacked out' ' , and the program wi l l wait for you to type in another pa i r of
coord inates.

Don 't get too eager ma king up pretty pictu res, because the prog ram does not cater for you maki ng
any m istakes ! Try entering a number outside the range given above. You ' l l get an error B/30 after the Y
value has been entered . This means that you have attempted to PLOT something that the ZX81 ca n not
manage.

UNPLOT works in exactly the same way, except that it cnanges the squares back to white aga in , so
you can rub out a point in a prog ram when it is no longer needed, but keep all the rest of the picture as it
was.

Question
Which of these com mands a re va l id, and which a re inva l id?

(a) PLOT 1 0,20

(b) UNPLOT 1 0*20,20

(c) PLOT 43,63

(d) UNPLOT 0,0

(e) PLOT 1 00/2 ,27+3

1 33

Chapter 7

Answer

(a)

(b)

(c)

(d)

(e)

Va l id

I nval id - 200 is outside the l i mit of X-coord inates

I nval id - the X-coordinate comes fi rst, Y-coordinate second, and th is example
would only work if the two numbers were reversed .

Va l id

Va l id

How d id you get on? If your answers were wrong, try entering those va lues i nto the smal l
demonstration program that was given to you to try. I f you get a report code B , then you know that the
values were wrong. Answers (b) and (c) wi l l g ive you a report code B .

7 .2/ 1 P LOTTING IN PRACTICE

So now you should be able to write a smal l p rogram that d raws two l ines on the screen - one down, and
one across . Have a go at th is :

Question
Write a program that d raws two l ines on the screen. The vertical l ine should be on the left-hand edge

of the screen, start ing at the top of the screen , and should be 20 squares long. The horizontal l i ne should
start at the foot of the vertica l l ine and stretch across the screen for 20 squares .

Your screen shou ld look something l i ke this when you run the program :

(h int : you ' l l need to th ink FOR a minute before you turn to the NEXT page !)

1 34

)

)

)

Chapter 7

Answer
Sorry about that rather un-subtle c lue ! Here's my solution :

1 0 FOR Y=24 TO 43 }
20 PLOT 0,Y d raw vertical l ine
30 NEXT Y
40 FOR X=0 TO 1 9 }
50 PLOT X,24 d raw horizontal l ine
60 NEXT X

Wel l ? That wasn't too bad, was it? If you thought it was bad , then you should read over Chapter 4,
section 4 .2 " I teration (2)" again - it covered the FOR and NEXT com mands.

Perhaps you had forgotten that FOR loops can start wi.th a number l ike 24 - you can start with any
numeric expression whatsoever - refer to Chapter 4, section 4 .2 if you need rem inding .

I t 's a lso worth remembering that FOR loops a re inclusive, that means that the loop is run for a l l va l u es
inc luding the start and f in ish va lues of the contro l variable.

I f you d idn 't qu ite g rasp the PLOT and UNPLOT com mands, then hopefu l ly that solut ion has helped
you - even so, read section 7 . 2/1 aga in .

7.2/3 T HE FULL P R OG RAM

We've managed to create a routine that d raws a pair of axes o n the screen (length 2 0 by 20), and to
write a rout ine that takes in numbers from the keyboard and checks that they a re in the range 0 to 1 9 .
Not m uch further to go then .

We have f ina l ly t o p u t these two routines together, add a few bits a n d pieces just t o smarten up the
presentation of the screen, and that' l l comprete the progra m .

I f you 've overwritten t h e " G RAPH" program, then load i t aga in a n d look a t t h e l ist ing.
L ines 1 0 to 60 a re taken straight from the example above .
L ines 1 00 to 1 40 a re new - these l ines clear out three l i nes on the screen below our graph axes, as

these a re going to be used for asking for i nput, and p ri nting any error messages.
Lines 200-260 a re a lmost the same as an ear l ier solution - the only exception to th is is the use of

PRINT AT to print the messages. The reason for th is change is because we want the g raph to remain on
the screen a l l the t ime, so we cannot use CLS, or we would lose the graph so far. So I have decided to
keep a l l my messages on l i nes 1 3 to 1 5, and these three l i nes a re cleared out (l i nes 1 00-1 40) after each
pair of coord inates is entered .

L ine 300 m erely PLOTS the appropriate point on the g raph - va riable S holds the X coord inate, and the
Y coord inate has 24 added to it s ince the g raph is at the top of the screen .

7.3 INPUT EXPRESSIONS

But there is one last po int that was mentioned in the or ig ina l defin ition of the p rogram (section 7 . 1) . I f
we want to stop the p rog ram , then type QU IT.

Surely this can ' t work? Try it to see.
It does work, it g ives rise to error report 2 , which means that a va riable name i s not found .
So which variable is not found? It m ust be a variable ca l led QU IT.
And indeed it i s .
You 've probably got qu ite s ick of me saying the same things over aga in , but th is t ime i t 's qu ite

important - whenever you enter someth ing i nto an INPUT statement then you may enter

any valid numeric expression.

1 35

Chapter 7

That might take a whi le to s ink in fu l ly, so let's try an experiment to see what it can do. Type this
program i n :

1 0 LET A= 1
20 LET 8 = 200
30 LET C=5
40 SCROLL
50 PRINT " ENTE R AN EXPRESS ION"
60 INPUT E
70 SCROLL
80 PRINT "YO U ENTERED " ; E
9 0 GOTO 40

Now run it . When it asks you to enter an expression, try entering these :

(a) 25 ord inary number
(b) A va riable name A eq uals 1
(c) 9* B should show 1 800
(d) B/C g ives 40
(e) A= C true/fa lse expression
(f) A<>C another true/false expression
(g) QU IT variable name

Can you see why Q U IT g ives error report 2?
Thi nk of the possib i l it ies - whenever a prog ram asks you to enter a number that i nvolves calculat ion,

you don't even need to do it ! Just type the whole expression in , and let the ZX81 do the rest !

Question
In Chapter 3, section 3 . 1 " I teration (1) " , you were introd uced to severa l ways of gett ing the ZX81 to

stop runn ing a progra m . These were :

(a) pressing the B R EAK key (but not if the ZX81 is wa iting for input) which g ives report code D .

(b) typ i ng t h e command STOP i f t h e ZX8 1 i s wait ing for input . This a lso gives report code D .

Can you now add another method to the l ist? Note that th is method is not as "c lean" as the others.

1 36

)

)

)

)

Chapter 7

Answer
Typing in an undefined variable name. This g ives error report 2 .
M ost programs wi l l never use a variable name l i ke XOYTGGZX, so you would be fai rly safe (I ' l l bet

someone does, just to spite me !) if you entered a name l i ke that into an INPUT command .
I f you r answer was wrong, or you cou ldn't answer the question, try read ing section 7 .3 aga in .
Before you fin ish this chapter, here's another program for you to write :

Question
The program is to plot a 20-by-20 letter "X" in the centre of the screen, then immed iately "unplot" it .

The program should keep runn ing (plott ing and unplotting the letter "X") unt i l the B R EAK key is pressed .
You wi l l need to f i rst decide the coord i nates of the position of the letter.

Try to make use of subroutines and FOR NEXT loops.

1 37

Chapter 7

Answer
One of many sol utions is :

1 0 REM DRAW X CONTI N UOUSLY
20 CLS
30 LET DRAW= 1
40 GOSUB 1 00
50 LET DRAW=0
60 GOSUB 1 00
70 GOTO 20

1 00 REM DRAW O R U N DRAW X
1 1 0 LET D I R ECTI O N = 1
1 20 LET X=22
1 30 GOSUB 200
1 40 LET D I RECT ION= - 1
1 50 LET X=41
1 60 GOSUB 200
1 70 RETURN
200 REM DRAW OR U N D RAW 1 LI N E
2 1 0 FOR Y=31 TO 1 2 STEP - 1
220 IF DRAW THEN PLOT X,Y
230 IF NOT DRAW THEN UNPLOT X,Y
240 LET X=X+ D I R ECT ION
250 NEXT Y
260 RETURN

describe program
ready for runn ing
tel ls us we're plotting
subroutine to plot X
unplot marker
now u nplot the X
start again

horizontal d i rection +
start position on screen
d raw one l ine
reverse horiz. d i rection
start position
d raw other l ine
end of subroutine

for 20 l ines down screen
p lot if requ i red . . .
. . . otherwise unplot
next horizontal position
next vertica l position
end of su broutine

I hope that has given you a good example of many of the topics we've covered up unti l now - the use
of subroutines (nested) , FOR NEXT loops, expressions, graphics - you name it !

A program l ike this is m uch easier to write when you 've thought it out p roperly i n advance. There is a
big temptation to s it down and compose d i rectly i nto the ZX81 - resist this temptation.

Summary
This chapter has been a fairly mixed bag of items - we've seen how subroutines make programs

sma l l and efficient. how to plot graphic-type p ictures, and a lso learnt something new about the INPUT
command .

The bas is for the whole chapter was to let you gradua l ly bui ld up the best part of a complete program ,
learning a l l these ideas o n the way.

The next chapter takes us onto someth ing that we've skimmed over up unt i l now - the use of strings
(or text) in prog rams .

Meanwhi le, have a browse over th is l i s t to make sure you '. re happy with what th is chapter has told
you .

- what a subroutine is , and how it can be used.

- the benefits to be gained by using subroutines - this is ca l led modular programming.

- how subroutines can set variables to g ive a reply to the main body of the p rogra m .

- that subroutines can b e nested t o maxi mise their efficiency.

- how to use the g raph-plotting faci l ities of the ZX81 .

- how any va l id expression can be entered in as input data .

Exercises
1 . Write a program that calcu lates the scale of the coordi nates of a graph . The p rogram should accept

the data poi'nts, ca lcu late the difference between maximum and min imum points and from this ,
deduce the l im it of one pixe l .

1 38

If you have a 1 6K RAM pack, you may l i ke addit ional ly to plot the coordi nates with appropriate
scales a longside.

)

Chapter 7

2 . Take any paragraph from this course, and count the number of times each letter occurs. P lot a bar
chart of the frequency of occurrence of each letter,

I f you a re fee l ing up to it, try the same program using paragraphs taken from different languages.
Compare the charts - you should d iscover that each language has a distinct pattern .

1 39

)

)
)

)

)

Chapter 8

Handl ing Text Strings
Up unt i l now, we've concentrated a lmost ent irely o n handl ing numbers and numeric expressions,
although we've seen how some fai rly i nteresting thi ngs can be done !

This chapter deals ent irely with strings. I n section 1 we look at how strings can be manipu lated, whi le
section 2 studies the way strings a re represented with in the ZX8 1 .

8. 1 STRING MANIPULATION

8 . 1 / 1 STRING VARIAB L ES

The only rea l use of strings so far has been as part of PRINT commands, for example,

20 PRINT " H E LLO T H E R E "

where t h e string expression " H E LLO T H E R E " enclosed in q uotes i s pr inted d i rectly onto t h e screen .
J ust as the ZX81 can store va lues i n a numeric variable, i t can also store strings in string variables.
A string variable name can only be a maximum of a s ingle letter (l i ke control variables in FOR/NEXT

loops), but they a re fol lowed by a dol lar-sign $ to tell the ZX81 that this variable is for hold ing text or
strings, not numbers.

This sounds qu ite confus ing at f i rst, but take a look at these exa mples :

LET A$= " H E LLO T H E R E "

Because t h e variable name A i s fol lowed b y $, t h e ZX81 instantly knows that th is is a string variable.
used for hold ing strings rather than numbers . So it puts the words H E LLO TH E R E into this variable for
you to use later on .

PRINT A$

Now the ZX81 sees that you a re trying to pr int some text, because the variable name is followed by a $
symbol . The text held by variable A$ wi l l be printed on the screen - i n th is case H E LLO TH E R E .

O f cou rse, variable A $ can hold l iteral ly anyth ing, since a s we saw in Chapter 5 , even those graph ic
characters and inverse video characters can go i n between quotes. Whatever is i n quotes is he ld by A$,
and pri nted out when we say PRINT A$.

Type those two l ines i n to convince you rself that they rea l ly work.
We can a lso use the INPUT com mand to ask for a string from the keyboard just as we have done with

numbers up until now. Try th is :

1 0 SCROLL
20 PRINT " E NT E R S O M ETH I N G "
30 INPUT A$
40 SCROLL
50 PRINT "YOU TYPE D : " ; A$
60 GOTO 1 0

) The SCROLL com ma nds were put in so that you can keep going for as long as you l i ke without error 5 .
The important l i nes a re l ine 30 - which asks you to i nput variable A$ - and l ine 50 which p ri nts it

stra ight back out at you ! If you get e rror 5 , then it's because the l ine you a re trying to print out (in l ine 50)

1 43

Chapter 8

is too long to fit on the bottom l ine - SCROLL only leaves enough room on the bottom of the screen for
one l i ne, so if you type in (say) 50 characters, then the ZX81 can't fit 50 characters on one l i ne !

You ' l l notice that whenever you use INPUT i n a program to input a str!!J.9 , that when the p rogram is
run, two quotes sym bols appear at the bottom of the screen with the IJ cursor in between. This is
actual ly the ZX8 1 's way of tel l i ng you that it i s expecting a string rather than a number.

Question
You've seen that a string (as used in a PRINT statement between quotes) can contain any characters at
a l l on the keyboard. There is one exception to this - can you find it?

1 44

)

)

)

)

)

)

Chapter 8

Answer
The quotes character (SH I FT/P) cannot be used with in a string because it means "the end of the strin g " .
I f you tried t o type a quotes character i nto that last prog ram, you ' l l have had a syntax error � given to
you .

8. 1 /2 THE QUOTE IMAG E

How can we get round th is? Obviously, the quotes character can be qu ite a useful one. The answer is
the funny double-quotes character S H I FT/O (th is is ca l led the quote image) . I f the ZX8 1 sees one of
these ins ide a string, it automatica l ly prints it out as a s ingle quotes. Try this :

PRINT " I AM A II "ZX8 1 " ,, COM PUTE R"

8. 1 /3 CO NDITIO NAL STRIN G EXPR ESSIO N S

Now we can store strings, print them and input them. U n less we can actual ly manipulate them i n some
way, however, there isn't much point i n th is .

The ZX8 1 is equipped with some real ly useful features for manipu lating strings. The rest of th is
chapter wi l l deal with a l l of these in deta i l - even down to understanding how the computer ' '.sees"
letters - it 's not rea l ly the same as you and me.

F i rst, let's study a b i t about IF.
J ust as we can test for two numbers being the same or not, l i ke

IF C E C I L=:= 7 THEN PRINT "THEY ARE EQUAL"
or

IF M I LK P R I CE<>20 THEN PRINT "NO TH EY ARE NOT"

we can test to see if strings a re equal or unequa l . Look at this :

And so on .

50 IF A$= " NO M O R E " THEN GOTO 200
60 IF 0$< >"YES" THEN STOP

You need to be a bit careful when you ' re doing th is , because the ZX81 checks for an exact match.
Let's g ive it a try with another smal l progra m :

1 0 INPUT T$
20 IF T$= " 1 GOT IT R I G HT" THEN GOTO 50
30 GOTO 1 0
50 PRINT "AT LAST"

If you try to enter things l i ke

I G OT IT R ITE
I GOT IT R I GHTER

you ' l l soon see that it 's only when you type i t exactly the same (inc lud ing the number of spaces
between words) that the ZX81 stops.

Question
Write a smal l program that asks if you would l i ke another game - assum ing you had just f in ished playing
one ! The question should on ly accept YES or NO, and any other answer is rejected . Assume, for the
purposes of this q uestion, that by writ ing GOTO 1 000, the game wi l l start aga in .

1 45

Chapter 8

Answer
I expect your answer is qu ite d ifferent from mine. but here goes :

How did you do?

1 0 PRINT "WO U LD YOU L I KE ANOTH E R GO?"
20 INPUT 0$
30 IF 0$= "YES" THEN GOTO 1 000
40 IF 0$= " NO" THEN STOP
50 PRINT "ANSWER YES OR NO"
60 GOTO 1 0

(n ice message)
(get you r answer)
(start new game)
(stop if no)
(t ick you off)
(try aga in)

I f you forgot to put a $ symbol after you r variable names (which m ust be a s ing le letter for string
variables). then read section 8 . 1 /1 aga in .

Perhaps you had trouble writing those IF statements. Try reading section 8 . 1 /3 aga in .

8. 1 /4 CONCATENATION

Another usefu l trick we can try is to join two strings together making one big string . This is done by
using the " + " (addit ion) symbo l . Like so :

1 0 LET G$= "ABC"
20 LET H$=G$+ "DEF"
30 PRINT H$

and l ine 30 wi l l g ive the print ABCDEF. N ice. huh?
You can't mu lt ip ly, d ivide o r subtract. but you can add . I t doesn't mean qu ite the same as you ' re used

to. but when you have a th ink about what the ZX81 is doing. it is consistent. The p roper name for this is
concatenation.

We' l l leave th is for a m inute to consider a bit more about the way the ZX81 is working th ings out.

8. 1 /5 STRING EXP R ESSIONS

I n Chapter 1 , you were introd uced to the idea of numeric expressions and how they represent a value .
I n j ust the same way, we m ust now understand the meaning of a string expression.
A string expression represents a string, and if printed. wi l l pr int a string . Here a re some examples of

string expressions :

A$
" ROM EO. ROM EO"
G$+"DEF"

I n fact, i f there i s a $ symbol a round. or something in quotes. then it m ust be a string expression . Just
as LUCK*3 is a numeric express ion, so H$+ "DEF" is a string expression, that i n ou r ear l ier exa mple
stood for the string ABCDEF .

Got the idea ?

1 46

)

)

Chapter 8

Question
Which of the fol lowing a re n umeric expressions and which a re string expressions, and which a re
neither? Two a re a lso inva l id - can you spot them ?

(i) G$
(i i) 47/1 3 .33
(i i i) 32+ "STR I N G "
(iv) "TH EATRE/7"
(v) TH EATR E/7

(vi) "TH EATR E"/"7"
(vi i) STOP

(vi i i) "JO H N " + "WAYNE"
(ix) THEN

1 47

Chapter 8

Answer
(i) string
(i i) numeric
(i i i) i nval id
(iv) str ing
(v) n umeric (in this case TH EATRE is a variable name !)
(vi) i nvalid

(vi i) neither - it's a command
(vi i i) string
(ix) ne ither - it's part of the IF command

I hope that wasn't too taxing. I f your answers were wrong, then you should read Chapter 1 section 1 .3
"Variables" and section 8 . 1 /5 over again . Try to get it clear in your mind what these various
"expressions" a re representing .

8. 1 /6 STRING F UNCTIONS

Now that you 've g rasped (hopefully) the idea of a string expression, we can i ntroduce

string functions.

These funny th ings operate on numeric expressions to produce string results.
In a s im i la r way, the numeri c functions operate on numbers to p roduce a numeric result - for example

the INT function operates on the following numeric expression to g ive the INTeger value (i . e . all decimal
fractions have been removed) .

Let's take the

STR$ function.

Notice how the name of the function is fol lowed by a $ symbol . This immed iately tel ls you that the
resu lt of this function is a str ing and can only be assigned to a str ing variable.

The STR$ function converts the fol lowing numeric expression i nto its equ ivalent str ing form .
So

LET N$=STR$ 45

is the same as writing

LET N$= "45"

I know what you ' re saying - "Why bother us ing the STR$ funct ion, when I can just write it the other
way?"

Well, just try writing

LET N$=STR$ (LUCKY*2000.972)

the other way. You ' l l soon see why STR$ is worthwhi le .
U nt i l we've covered some m ore g round with strings, the fu l l benefits of the STR$ function wi l l not be

very clear to you . However, you ' l l at least be aware of what a string function i s when you see one.

1 48

)

)

)

)

)

Chapter 8

Question
Although you don't understand what other string functions can do just yet, you should be ab le to
recognise them when you see them.

Which of the following items a re string functions, which a re numeric functions, and which a re
neither? You may look at the keyboard if you wish .

(i) STR$
(i i) TAN

/ (i i i) INKEY$
/ (iv) H$+"DEF"

(v) VAL
'- (vi) CHR$

1 49

Chapter 8

Answer
(i) string funct ion
(i i) numeric function
(i i i) str ing function
(iv) neither - it 's a string expression
(v) numeric function

(vi) string function

I f your a nswers were wrong, then perhaps you can now see why, a lthough if you had trouble, then try
reading sections 8 . 1 /4 to 8. 1 /6 over aga in .

8. 1 /7 S LICING

Now we come to one of the more i nteresting features of strings.
The ZX81 i s such a c lever beast that it can look at individual l etters or characters inside a string. Here's

how we go about it .
Whenever we want to look at a certain letter inside a string, we put a number in brackets after the

variable name (or after the string expression, to be precise). So we can look at the first l etter i n a string
by writing :

G$(1)

o r we can look at the fifth letter by writing :

H$(5)

The variable names a re i rrelevant - the point of it i s the number i n brackets that fol lows the variable
name.

Type this i n :

1 0 PRINT " ENTER A STR I N G " ;
20 INPUT N$
30 PRINT N$
40 PRINT "TH E F I RST LETTE R I S " ; N$(1)
50 GOTO 1 0

Now run it and convince yourself that i t actua l ly works !
There is only one smal l point to watch out for. If you press the N EWLI N E key without typing a nyth ing

in between the quotes, you have effectively not got a f i rst letter. The ZX81 rea l ises that there is no fi rst
letter, and so g ives an error 3. If you look up error 3 at the end of the book, it g ives a rea l ly compl icated
description of someth ing. Don't worry for now, you ' l l understand a bit more after the next chapter.

What makes this so nice is that the number in brackets can be - you've guessed it - any numeric
expression . This means we can pick out any letter we like. Think about i t for a moment. There is only
one d isadvantage - if we get error 3 whenever we try to get a letter that's not there, and we don't know
how long the string is, how can we ever make good use of th is featu re?

8. 1 /8 THE LEN F U N CTION

There's a special function i n the ZX8 1 that gets us out of this p roblem. It 's cal led

1 50

LEN (under the K key)

)

)

)

)

Chapter 8

and it requ i res a string expression after it . The LEN function tel ls us how long the string is. It gives a
numeric result . Look at this :

1 0 PRINT " E NTER A STR I N G " ;
2 0 INPUT N $
3 0 PRINT N $
4 0 PRINT "YO U R STR I N G HAD" ; LEN N$; " LETTERS"
50 GOTO 1 0

I f you ' re clever, you don't need to type the whole program in aga in - the previous example had the same
fi rst three l ines and last l ine , so a l l you need to do is enter the new l ine 40.

So now we can see how many letters there a re in a string and make sure that we don't look beyond
the end of it . This effectively stops us from getting error 3 when we' re using brackets to take a letter
from a string.

This single letter we've taken is referred to as a slice, b.ecause it is l i ke a s l ice out of a cake.

Question
Taking the fol lowing program, can you add some extra l ines to make it print each letter of the var iable
W$ on a d ifferent l ine of the d isplay? H ere's a sample run so that you can see what I mean :

TH E WO RD I S CONSTABLE
c
0
N
s
T
A
B
L
E

9/9999

Here's the progra m :

1 0 LET W$= "CONSTABLE"
20 PRINT "TH E WORD I S " ; W$

1 5 1

Chapter 8

Answer
Your best approach is to use a FOR/NEXT loop. a lthough to use GOTO is not rea l ly much d ifferent.

1 0 LET W$="CONSTABLE"
20 PRINT "TH E WO RD I S " ; W$

1 00 FOR S= 1 TO LEN W$

(as given)
(as g iven)
(set up loop starting at 1 . going
through to the last letter in W$, since
LEN W$ indicates the last letter)
(print the next letter) 1 1 0 PRINT W$(S)

1 20 NEXT S
9999 STOP

(next letter)
(a l l done)

Don't be too alarmed at this stage if you r program didn't work exactly as intended.
I f you had problems, then I suggest you type that solution in and ru n it. Watch what happens. Then

read sections 8 . 1 17 and 8 . 1 /8 once more to make it al l a bit c lea rer.

8. 1 /9 SUBST RINGS

You've seen how to get an ind ividual letter out of a string, but what about getting a g roup of letters ?
One way of doing th is is to use a smal l FOR loop to take each letter (l i ke the solution above) and join

them all together us ing the + symbol, l i ke so :

Assuming the string variable V$ conta ins the string " H O RACE", we want to get the letters ORA into a
string variable P$. That is , we want to take out the second letter up to the fourth letter and put it i nto
P$:

5 LET V$= " HORAC E "
1 0 LET P$= " "

2 0 FOR L=2 TO 4
30 LET P$= P$+V$(L)
40 NEXT L

1 00 PRINT P$

(set up P$ as "empty" - no letters)
(more on this later)
(for each letter from no. 2 to 4)
(add next letter onto P$)
(next letter)

Does that a l l make sense? Line 1 0 is part icu larly important. I f we left l ine 1 0 out, then when the
program is run, the ZX8 1 would g ive error 2 at l ine 30. Why?

Because the statement LET P$= P$+V$(L) rel ies on P$ existing before it can work. The statement
means "take the variable P$, add the Lth letter from variable V$ to the end of it, and put the answer back
into P$" .

But the ZX8 1 can only d o this i f variable P $ exists a l ready. S o l ine 1 0 i s necessary in order for the
program to work. What exactly does l ine 1 0 do?

I t sets up string variable P$ as the empty string.
You must remember that there is a big d ifference between a variable that exists but conta ins no

characters, and a variable that does not exist.

Question
See how you get on with th is :

(a) What would you expect the LEN function to give you if it were used on an empty stri ng ? An
example :

1 0 LET P$= " "
2 0 PRINT LEN P$

(b) How do you th ink that you cou ld test for an empty string?

1 52

)

)

)

)

Chapter 8

Answer
If you spotted it, then very good . The second part of that question was rea l ly another way of asking the
f i rst part .

(a) An empty string would g ive LEN equal to zero .

(b) There a re two ways :

IF LEN X$= 0 THEN
and

IF X$= ' " ' THEN

but watch out ! - the " " used i n a l l these examples is not the character S H I FT/Q - it is SH I FT/P pressed
twice.

The S H I FT/Q double-quotes is only ever used if you want to print out a quotes character within a
string. Look back at section 8. 1 /2 if you ' re unsure .

Those questions hopefu l ly made you th ink a b i t about the natu re of strings inside the ZX8 1 . I f you
found them impossible, then read section 8 . 1 /9 over aga in .

What that example was lead ing to was to show a better way of getting groups of letters out of a
string . We can write something l i ke :

1 0 LET V$= " H O RACE"
20 PRINT V$(2 TO 4)

and those two l i nes replace the whole p rogram shown on the last page. L ine 20 says "take the second
to fourth characters from the string expression V$ and p rint them" .

But there i s n o reason why w e can 't say

20 LET P$=V$(2 TO 4)
or even

20 LET P$=V$(J I M MY TO FREDDY)

provided that J I M MY and F R EDDY a re both previously defined numeric variables, and that the values of
J I M MY and F R EDDY a re characters that exist in the string V$, otherwise you ' l l get that rotten error 3
aga in .

The f igures in brackets only restrict the size of the string expression, so that V$(2 TO 4) is still a string
expression . This means we can write something l ike :

1 0 LET V$= " H O RACE"
20 LET V$(2 TO 4) = "XYZ"
30 PRINT V$

and the ZX8 1 wi l l pr int HXYZCE . This feature can be extreme ly usefu l .

Question
Write down what you would expect the fol lowing smal l exam ples to g ive :

(i) PRINT "ALPHABET" (6 TO 8) A t
(i i) LET X = 2

LET Y = 6
LET F$= " H Q RTIG: U LTU RE" e:i fl (, r
PRINT F$(X TO Y)

(i i i) Again , us ing F$= " H ORT I C U LT U R E " from question (i i) ,
PRINT F$(Y TO 1 3) c._v ·�"' j'{1 · '

(iv) Sti l l us ing F$,
LET F$(1 TO 2) = " PA" YV\ '� ' · , ,

1 53

Chapter 8

Answer

(i) B ET
(i i) O RTIC
(i i i) error 3 , s i nce 1 3 is beyond the length of H O RTI C U LTU RE
(iv) PARTICU LTU R E

I f your answers were wrong (or even one of them), read sections 8 . 1 17 to 8 . 1 /9 aga in .

8.2 STRING REPRESENTATION

8.2/ 1 HOW T HE ZX8 1 SEES STRING S

When I started writ ing th is cou rse, I vowed that it would not get too techn ica l , because computers are
such complicated an imals to ful ly understand . As fa r as you are concerned, whatever the ZX81 does
inside is completely its own business !

At this point, however, we need to th ink a l ittle bit about how the ZX81 "sees" th ings l i ke numbers
and letters, because this is one a rea where strings can be made fu l l use of.

I f you can't understand th is section, or don't want to, then you ' l l certa in ly have enough understand ing
of strings in order to write some extremely useful p rograms. But don't let me put you off, si nce what
fol lows is probably one of the most interesting sides to computers.

The ZX8 1 , in com mon with all other computers, does not rea l ly understand Engl ish at a l l . I t always
works in numbers , and merely reserves special numbers (cal led code numbers) to represent ietters and
characters. So whi le you a re enteri ng letters and characters, the ;:'.'.X8 1 is trans lating them into the code
numbers that it can work o n .

How c a n w e s e e what t h e ZX81 th inks each character i s ?
I 've inc luded a sma l l p rogram that you can run :

LOAD " CODES"

When you ru n i t , it shows you two things on each l i ne .
F i rst is a normal n umber. wh ich starts at zero, and goes up by one on each new l ine as the program

runs. (Run it now so that you can see what I mea n .)
Second is the character which the ZX81 connects with t h i s code nu mber. S o when you see the l i ne :

38 R E PRES E NTS A

this tel ls you that the ZX81 connects the code number 38 with the character "A" . Note that I use the
word character, because as far as the ZX81 is concerned, what we ca l l "the letter A" is mere ly another
character - as is the symbol : or * or any other of the items on the keyboard .

O K, O K, I know I said it wou ld be tricky, but if you haven't fol lowed that bit too wel l , don't panic .
The program "CODES" has a couple of features you may l i ke . I f you see someth ing interesting on the

screen, then just press any key (except B R EAK) . The screen wi l l stop for about 1 0 seconds, then carry
on again . If you press a nother key wh i le it 's pausing, then it wi l l carry on even though the 1 0 seconds
aren't up. Have a go .

That "stopping" and "starting" feature makes use of strings (bel ieve it or not !) , and you ' l l soon see
how it's done.

Watch the screen as a l l the various characters go up . You ' l l see a l l the items on the keyboard
(including the keywords l i ke STOP, RUN, etc and the functions l i ke ABS, LEN) g radua l ly appear. The
a lphabet is there, and a l l the numbers from 0 to 9. Notice how these numbers (0 to 9) a re represented by
a different value . This is because the ZX8 1 sees "5" as a character, and not a va lue .

There a re a lot of numbers that show " R E PRESENTS ? ' ' . These are where the ZX8 1 does not have
any equivalent character to correspond to the part icu lar number.

So now we've seen that the code value of the character A is 38.
How can we make good use of th is? There are many ways, but the most important of these is . . .

1 54

)

)

\
/

Chapter 8

8.2/2 STRING COMPARISO N

Two characters can be compared so that we can see if one character has a larger or smal ler value than
another character, and therefore we can put characters i nto a sort of sequence.

Whenever you ask the ZX81 a question l i ke

IF H $ = "ABCDEF" THEN GOTO 60

the ZX81 looks to see if the code value of each letter in the strings are identica l . Although it amounts to
the same th ing to us, it does have more flexibi l ity when it comes to writ ing th ings l i ke :

I F H$>"ABCDEF" THEN GOTO 60

because we can see what the ZX8 1 wi l l do .
Suppl ied with you r ZX81 was a handbook g iving fu l l deta i ls of a l l that the ZX81 can and can't do. I f you

turn to the end of this handbook - page 1 81 - you ' l l see Appendix A l ists each of the ZX81 characters
and the code value that goes with each character (ignore the other columns - they won 't concern us i n
this course) .

Try your hand at these :

Question
Say whether you th ink the following cond itions a re true or false . As an example, I wi l l answer the f i rs·t
one for you .

(i) I s "A" < "(g " (i nverse 0) ?
(do you remember what <,>, <>. > = and < = mean? Look back to section 3 .2/3 i f you can 't)
Answer: Yes. S ince we know that the ZX8 1 compares the code value of each character in a string
one-by-one (see above), a l l we need to do to answer this q uestion is to see if the code value for A
(which is 38 - look it up i n Appendix A of the ZX81 Handbook) is less than the code va lue for an
i nverse 0, which is 1 56. S ince 38 is less than 1 56, the answer i s

Yes, "A" is less than "[g" (i nverse 0) .
(i i) Is "Q" > " + " ?
(i i i) I s "AA" > = "AB " ?
(iv) I s " 6 " < "£" ?

1 55

Chapter 8

Answers
(i) we've a l ready answered th is one.
(i i) Yes - code of "Q" is 54, and code of " + " is 21
(i i i) No. This may have caused you a problem. Remember that the ZX81 compares one-at-a-time. so

f i rst i t says ' I s code "A" g reater than or equa l to code "A" ? ' . The answer i s that they are equal . so i t
carries on to the next pa i r o f characters . Now it asks ' I s code "A" g reater than or equa l to code " B " ? ' .
This t ime the answer is No. s ince code "A" is 38 and code " B " is 39 .

(iv) No . Code value of "6" is 34 and the code va lue of "£" is 1 2 . Therefore the code va lue of "6" i s
greater than the code value of "£" .

If your answers to parts (i i i) and (iv) were correct then you deserve a gold meda l !
I t i s very easy t o make a mistake i n answering q uestions l i ke those. and you a re not expected to learn

all the d ifferent code va lues for each character. I f you d idn 't understand them at a l l . try read ing that
section over again in the l ight of experience. Look at the " CODES" p rogram runn ing , and check that the
resu lts agree with Appendix A in the Handbook.

I expect that by now, you a re p robably itch ing to see how you can use al l th is i nformation.

8.2/3 THE CODE AND CHR$ F U N CTIO N S

There a re two functions that let you make fu l l use of the way the ZX81 handles its characters i ns ide.
These are:

CODE s

where s represents a string expression .
CODE g ives a numeric result which is the ZX81 's code n umber correspond ing to the first character in

the string expression that fol lows. Hang on a minute and you ' l l see some examples.
The other function is

CHR$ n

where n represents any numeric expression . What do you know about a function that has a $ symbol?
The answer is that it is a string function . The CHR$ function g ives you the character that corresponds

to the fol l owing numeric expression.
Here a re a coup le of exam ples to show you what they both mea n :

CODE "A"
CODE "ABC"

CODE "£"
CHR$ 38
CHR$ 1 28

g ives the value 38.
a lso g ives the va lue 38 since the CODE function only looks
at the fi rst character.
g ives the va lue 1 2 .
g ives the character "A" as a s ing le letter string .
g ives a black square - look i n Appendix A to see what
character corresponds to the code va lue 1 28 .

Since the ZX8 1 on ly has characters with codes in between 0 and 255 , i f you try to write

CHR$ 256

or anything g reater than 256, you ' l l get an error B. This means that the ZX8 1 cannot g ive you any such
character.

Question
What wou ld you expect the two fol lowing examples to g ive ?

(i) CODE (CHR$ 38)
(i i) CHR$ (CODE "A")

1 56

)

)

Answer
(i) 38
(i i) "A"

Chapter 8

The reason is s imple . Part (i) asks you to g ive the CODE of the character whose code is 38 (CHR$ 38) .
Th is must be 38 !

By the same logic, but with the functions reversed, part (i i) asks you to g ive the character (CHR$)
whose code is the code of the character "A" (CODE "A") - and that must be "A" !

Sorry if you thought that was a bit of a trick question, but it was meant to show you that CHR$ and
CODE are rea l ly just the opposite of each other.

One gives you the code va lue of a character, the other gives you the character that corresponds to the
given code value .

I f your answer was wrong, or you just cou ldn 't answer, try read ing section 8 .2/3 aga in .

8.2/4 T H E VAL FUN CTIO N

) Here's another new function which is the opposite of STR$:

)

VAL s

aga in , s represents any string expression. VAL gives you the numeric equivalent of the fol lowing string .
Have care, because the nu meric equiva lent is n o t the same as the code va lue . Look :

PRINT VAL " 1 23456"

wou ld print 1 23456 on the screen .
You can't mu lt ip ly strings, but you can multiply the VAL equiva lent of a string. for example :

LET N$= "200"
PRINT VAL N$*3

would print 600 . The VAL function has converted the string into its numeric equivalent.
One point to watch with VAL is that you ' l l get an error C if the string is not a nu mber! So

PRINT VAL "4Z5E" *30

gives an e rror C . (Who wants to mu ltiply "4Z5E" by 30 anyway?)
A good use of the VAL function is to a l low you in a program to accept a string variable from the

keyboard and convert it to a nu mber. This a l lows you to enter mixed text and numbers i nto a prog ram
and sort them out to see what was typed .

8.2/5 A FULL EXAM P L E

One last p rogram for you . You a re going t o write the same prog ram, but it's supp l ied o n tape for you to
look at. should you get stuck.

Question

LOAD '.'SWO PPER"

There is no need to type RUN for th is p rogram - i t wi l l automatical ly start as soon as it loads. (Th is i s

1 57

Chapter 8

so that you can 't have a sneaky look at the p rogram before you write it ! }
The p rogram i nvites you to enter a string . I t then prints the same string back at you, but with a l l the

letters (or characters} reversed.
When you've had enough, just press N EWLI N E . The program rea l ises that you haven't typed anyth ing

and so it stops.
Have a go to see what i t does, then you write i t .

1 58

)

)

)

Chapter 8

Answer
Look at the program on the screen to see how it's written. You can get at the l ist ing by stopping the
program (refer back to the quest ion) .

This program can be written in hundreds of d ifferent ways - my own personal preference is to use
FOR/NEXT loops wherever possible. My reasons?

F i rstly it helps to reduce the s ize of the program - which on the basic ZX81 is something that you
should a lways watch out for. I t does not take a very big program to f i l l up the ZX81 's memory.

Secondly, FOR loops help to keep al l the code in one neat "parcel " that can be menta l ly put to one
side. The l ine FOR introduces qu ite t id i ly the fol lowing l i nes . I f GOTO's a re used, however, you have to
read through the l i nes of p rogram before you find out what the loop control is . H ere's j ust a t iny exa m ple
of what I mean :

Program (a)
1 0 LET X = 1
2 0 PRINT X
30 LET X=X+ 1
40 IF X<20 THEN GOTO 20

Program (b)
1 0 FOR X= 1 TO 20
20 PRINT X
30 NEXT X

Quite apart from the fact that (b) is shorter, it also tel l s you in the very first line that the fol lowing l i nes
are to be repeated for each va lue of X from 1 to 20. Prog ram (a) does not have the same ease of reading
- it's not unt i l l i ne 40 that you real ise that the previous l i nes are repeated for a l l va lues of X from 1 to 20 .

F ina l ly, FOR loops avoid us ing d i rect l i ne numbers . Although they cannot be tota l ly avoided in a
program, to keep the q uantity of l ine numbers to a min imum is a good practice as the changes requ i red
to a program become more manageable when you don't have to keep checking on each GOTO
constantly.

Lecture t ime is over now. How did you r version of " SWOPPER" work? I f it did the job, then that's
what real ly matters for now. The more p rograms you write and the more you study other programmers '
works the better you r own wi l l become.

I f you had problems writing "SWO PPER" then you should spend a b i t more t ime understanding the
nature of strings. Read th is chapter aga i n .

Perhaps you would l i ke to study FOR loops again . These were covered in Chapter 4 , section 4 . 2
" Iteration (2) " .

Summary
Once again, this has been qu ite an i ntense chapter for you and if you've fol lowed it all then you a re
certa in ly wel l on the way to writ ing your own fu l l p rograms. The computer vers ion of the game
" Mastermind" is now with in your capab i l it ies, but don't try to write it just yet ! Fol lowing chapters wi l l
add extra depth to your sk i l ls - especia l ly the next one, which is concerned with a rrays (a l l wi l l be
revea led !) .

But just take a last l ingering look a t the content of th is chapter. I f you ' re u nhappy with any part o f it,
then now is the t ime to read that section over aga in .

We've seen :

- that strings can be used in a s im i la r way to nu meric expressions; they can be held in string variables,
tested, manipu lated and p ri nted.

- how two (or more) strings can be concatenated .

- what a string expression means, and how to recogn ise a string function .

- how ind iv idual characters or g roups of characters (cal led "s l ices") can be extracted from a string or
entered i nto a string without d isturbing any other part of the string .

- how the ZX81 "sees" a string, and how th is can be used to good advantage when we want the
ZX81 to compare two strings.

Exercises

1 . Write a p rogram that asks for a string to be entered, then extracts a l l the vowels from the string and
prints i t .

1 59

Chapter 8

2 . The ZX8 1 normal ly shows letters as "black-on-white", but you can reverse this by adding 1 28 to the
code of the character (see S inc la i r Handbook, Appendix A) . Write a program that asks for a string to
be entered, then prints the string in "white-on-black" characters (usual ly called inverse video) .

3 . Create a program which a l lows you to "d raw" pictures. The program should i nput two numbers
(wh ich corresponds to a position on the screen) and a string which is to be pri nted at this point. As
more and more strings a re entered and p ri nted, so the screen can be g radual ly made into a picture.

1 60

)

\

)

)

0

u

··) Arrays

Chapter 9

This chapter introduces the last major topic in the course - a l l subsequent chapters merely strengthen
some of the ideas that have been introduced as we've gone a long. The fi rst section i n the chapter deals
with string a rrays, us ing a program to demonstrate how much easier they can make certain types of
programs .

Section 2 dea ls with nu meric arrays, aga in us ing programs from cassette to show how they can be
uti l ised .

9. 1

9. 1 / 1

STRING ARRAYS

AN EXAMP LE P R O G RAM

Let's start now with trying to identify what an a rray is and why it should be used .
From experience, the two topics that most beg inners f ind hard a re subroutines and arrays - the

former because it is a lways possible to write a program such that subroutines are not needed {although
the program wi l l most l i kely suffer !) and the latter {a rrays) because it seems hard to know exactly when
arrays can o r should be used .

We' re going to work our way g radual ly i nto a position where it is more o r less impossible to write a
prog ram without us ing an a rray. This wi l l hopefu l ly g ive you a clea r p icture of what an array rea l ly is a n d
what i t does for a p rogram .

The program is concerned with people l iving i n a certai n street, Subscript Street i n Ramstown .
This street on ly has 8 houses, since it connects two other main roads together but sti l l , the postman

a lways has g reat d iff iculty i n remembering which house has which fami ly l iv ing in it . Worse sti l l , each
house has no nu mber - they a re a l l cal led by a name.

Being a rathe r smart postman , he decided to chalk numbers onto each of the front gates {so that the
occupants wou ldn 't notice, of cou rse) and he ended up with something l i ke this :

House number Name of house Fami ly name

1 Dunroam in Jones
2 Lane End Smith
3 H i l lv iew Black
4 Hadenuff B rown
5 Nextdoor Walters
6 Alcazar Evans
7 Whynot Taylor
8 Cl i fftops McPhee

This was al l very wel l , but sti l l it d idn 't tel l h im who l ived where, since no letters ever had h is specia l
"house number" on them.

So he bought h imself a ZX81 {su rprise, surprise) and decided to write a s mal l program which wou ld
help h im to remember which house had which fam i ly i n .

He decided that each n ight he would run th i s program unti l he could reel the names of the houses and
fami l ies off the top of h i s head {OK - I know 8 i sn ' t a lot to learn, but just remember that this l im it is on ly
set by me to make it a l l manageable. There could equal ly be 200 houses) .

This i s where he got stuck. I t would be n ice i f he could type i n either a number, house name or fami ly
name and get the rest of the information out . But a program l i ke that wou ld go on for ages - imag ine
trying to write i t !

Question
Don't panic ! I ' m not going to ask you to write the whole program - just a few l ines .
Write down j ust the outline of a program which would show the house name and fam i ly name given

any house number . H ere's a sample run just to show what I mean :

ENTER H O U S E N U M B E R : 3
H O U S E : H I LLV I EW
FAM I LY : B LACK

9/9999

1 63

Chapter 9

Answer
Your program probably looked someth ing l ike :

o r

1 0 PRINT " ENTE R HOUSE NUMBER : " ;
20 INPUT N
30 PRINT N
40 IF N = 1 THEN PRINT "HOUS E : D U N ROAM I N " , , "FAM I LY :JON ES"
50 IF N=2 THEN PRINT " H O U S E : LAN E E N D" . , " FAM I LY : S M ITH "

1 1 0 IF N =B THEN PRINT " H O U S E : CL I FFTOPS' ' , , " FAM I LY : M CPHEE"

1 0 PRINT " ENTE R HOUSE N U M B E R : " ;
2 0 INPUT N
30 PRINT N
40 PRINT " H O U S E : " ;
50 IF N = 1 THEN PRINT "DUN ROAM I N "
6 0 I F N =2 THEN PRINT " LAN E END"

1 1 0 IF N =B THEN PRINT "CL IFFTOPS"
1 20 PRINT " FAM I LY : " ;
1 30 I F N = 1 THEN PRINT "JONES"
1 40 IF N=2 THEN PRINT "SM ITH "

2 1 0 IF N = B THEN PRINT "MCPH E E"

Wel l . You have to admit that they' re both long-winded . How did you r answer shape up? I expect you
got bored writing that lot out, so you gave up and looked at the answer, didn't you ?

Sorry t o disappoint you, but s o far, you know of n o other way o f writing such a prog ram (i f your
memory is real ly good, then you m ight have tried using a conditional GOTO - refer to Chapter 3) .

But there's no getting away from it . I t 's a boring drudgery to write a p rogram l i ke that.

9 . 1 /2 INTRODUCING TH E ARRAY

This is where arrays come in .
Wou ldn 't it be n ice to say to the ZX81 - "just print me out the deta i l s of house number 2" ?
We can. H e.re's a smal l compari son of how it's done .
I n the last chapter, you saw how an ind iv idual character can be taken out of a string by us ing a slice,

for exa mple :

PRINT V$ (2)

. . . which p rints the second character from V$.
With a string a rray (wh ich is what we a re referring to in our "postman " problem) we can set up a n

a rray consisting o f a quantity o f independent strings a n d then take o u t any one o f them . T h e command
that sets up the a rray i s :

D I M (on t h e D key)

. . . and th is tel ls the ZX81 how many items you want to store in you r a rray. We would write :

DIM H$ (8,9)

This says " Reserve eight string variables which each hold n ine characters" .

1 64

)

)

Chapter 9

By then writin g :

PRINT H$ (2)

. . . the ZX8 1 wil l print out not just one cha racter, but nine - the whole of the second string (as ind icated
by the n umber 2). I f we wanted to print the fou rth character from this second stri ng, we could write :

PRINT H$ {2,4)

Al l the DIM command has done is to extend our s l ices from characters to whole strings.

9. 1 /3 LOOKING AT T HE PROGRAM

Let's he lp the postman out and look at a program that lets h im enter a l l h is house names and fami ly
names i nto the ZX8 1 .

LOAD "NAMES"

) When the p rogra m is loaded, it automatica l ly starts run n ing. This is because I have a l ready entered a l l

)

)

the names g iven above and I don't want you to wipe them out straight away ! Don't forget - whenever
you type RUN, the ZX81 clea rs out al l the variables that exist. This was covered i n Chapter 6 .

If you make a mistake it doesn 't matter as you can always load the program back i n aga in .
F i rst of a l l the p rogram l ists the names of the houses and fam i l ies fo r you to see, then i t stops (error 9) .

Press N EWLI N E to look a t the p rogram l ist ing .
The p rogra m (with a l l the names) on ly j ust fits into the basic ZX81 , so un less you 've got the RAM

expansion pack, you may f ind it a bit s low moving a round the program to see what's going on . I t wil l he lp
i f you type FAST before you go too far .

Lines 30 and 40 set up two string a rrays H$ and F$. String arrays can only have a single letter var iable
name fol lowed by a $ symbol of cou rse) .

Array H$ is used to hold the house names . Line 30 says "Create an a rray ca l led H$ which conta ins 8
strings each with 9 characters " . Our orig ina l notes above said that there were only 8 houses i n the
street, so there would be no po int in creat ing an a rray of any more than 8 strings. The longest house
name is n ine characters - look back and check for yourself.

Question
How many strings does l i ne 40 set up and how long is each string?

1 65

Chapter 9

Answer

DIM F$ (8,7) sets up 8 strings, each 7 characters long .

If your answer was wrong, you should read section 9 . 1 /2 aga in .
Let's carry on with the program. Line 50 clears the screen and l i nes 1 00-1 50 take a number from the

keyboard and check that it is in the range 1 to 8. I f not, then the number is printed out fol lowed by a
question mark and the program tries to get another number instead . Th is variable N is qu ite important . I t
holds the house number that we wish to affect in some way. Lines 200-220 ask fo r a house name to be
entered - but what's this? L i ne 2 1 0 says INPUT H$(N) ! What does that mean? Have a th ink . We know
that N conta ins the house number - as an example, assume we've entered number 2. Line 2 1 0 says
" I nput a string from the keyboard (since the variable name has a $) and put it into the Nth string in a rray
H$ - s ince N is 2, put it in H$ (2)" .

So the resu lt of th is i s that the second string in a rray H$ has been entered from the keyboard . Got it? I f
not, don't worry too much a s you ' l l soon have a g o a t putt ing some i n you rself to see what happens . But
hang on for just a b i t longer.

Lines 300-320 do a s imi la r job on the a rray F$ - this t ime it 's a fam i ly name that's being entered .
Lines 500-530 ask if you want to enter any more. If you type " N " then the program wi l l stop . Any

other answer is taken to mean that you wish to cont inue. Line 520 is qu ite compl icated - it says :

IF LEN Y$<>0 THEN IF Y$(1) = " N " THEN STOP

Th is wi l l probably stump you at f i rst. The meaning of this l ine is as fol lows :

1 . Is the length of Y$ <> 0? No - then d rop through to the next l i ne number (i n th is case 530) and
ignore the rest of these steps .

2 . Since the ZX8 1 has reached this far, the length of Y$ must be non-zero - i .e . someth ing has been
typed i n .

3 . I s the fi rst character of Y$ equal to the character " N " ? I f the answe r is no , then ignore any more of
these steps - drop through to l i ne 530 .

4. Since the ZX8 1 has reached th is far, the length of Y$ must be non-zero and the fi rst character i s " N "
- i n which case STOP.

Why not just write . . .

IF LEN Y$<>0 AND Y$(1) = " N " THEN STOP

Just th ink what would happen if noth ing was entered into Y$ (i . e . it's an empty string) . LEN Y$ wou ld
equal zero - that's O K, but Y$(1) would then g ive error 3 because the string has not got a fi rst character
in i t ! Catch 22 !

You could write the same th ing us ing a series of IF statements and GOTO statements, but it would
take up a lot more room. The p rogram's big enough a l ready !

On with our p rogram .
Lines 600-630 a re a self-conta ined p rogram that l ist each of the items in a rrays H $, a n d F$ on the

screen for you to see. Each l ine shows the house number X, the house name H$(X) and the fam i ly name
F$(X) .

Line 700 is a " load-and-go" routine described in Chapter 6 .
We've now unpicked the program . Have a go a t chang ing a few names to get the fee l o f what the

a rrays H$ and F$ a re doing .
Type:

GOTO 600

1 66

'•)

)

This wi l l l ist out a l l the names of houses and fami l ies for you . Try it now.
I f you want to change any names, then type :

GOTO 50

DO NOT TYPE RUN - it wil l c lea r out al l the names that a re in the p rogram.

Chapter 9

The program wi l l ask you to enter the house nu mber that you wish to a lter. Enter a number between 1
and 8, then the program wi l l ask you to enter the house name and the fam i ly name. It then asks if you
want to change any more. I f you type anything beginning with "N ", the program wil l stop. Otherwise it
asks you to enter another house number .

Change some of the names then type GOTO 600 again to l ist them out. See how they've changed .

Question
Our postman wanted a way of just typing a house number and the ZX81 wou ld tel l h im the name of

the house and the fami ly l iving there. The p rogram you are playing with ("NAMES") can do this if o n ly
two l ines of the program a re removed.

Which two?
Here 's an example run of what he wants :

H O U S E N U M B E R ? 3
H O U S E NAM E :
FAM I LY NAM E :
M O R E ? N

9/520

H I LLVI EW
BLACK

1 67

Chapter 9

Answer
By removing l ines 2 1 0 and 3 1 0 the program wi l l work as the postman wanted.
If you don't bel ieve me - try it ! A l l you 've done is to stop the ZX81 from asking for a new name to be

entered . It sti l l prints the old one.
Was you r answer wrong? I f so, then look closely at the prog ram to see what i t 's doing with those two

l ines removed.

9. 1 /4 S U BSC R I PTS

Now you've seen how a rrays can save you program time and space (th ink back to the very fi rst question
in this chapter) , it 's t ime to move on .

String a rrays have been i ntroduced f irst because the last chapter had a l ready g iven you some clues on
a rrays when "sl ices" were covered .

Before we get going on numeric arrays, you need to u nderstand another bit of jargon.
Whenever we write someth ing l i ke :

H$(X) or F$(A, B)

. . . the expressions ins ide the brackets a re cal led

subscripts.

In these examples X,A and B are a l l subscripts. A common way of reading an expression l i ke H$(X) is
"variable H$ subscripted by X" .

Notice how important it is to get the subscripts the correct way round when more than one is
involved . Look at th i s :

DIM H $ (4,6)
PRINT H$ (2,3) and PRINT H$ (3,2)

. . . a re entirely different. H$(2,3) p rints the th ird character from the second stri ng whi le H$(3,2) prints
the second character from the th i rd string . Pictoria l ly, this i s :

DIM H$(4,6)

six characters
H$(x, 1) H$(x,2) H$(x,3) H${x,4} H$(x,5) H$(x,6)

...

H$(1 ,x)� 1 ' 1 1 ,2 1 ,3 1 ,4 1 ,5 1 ,6 H$(1)
s .. t

H$(2,x)� 2, 1 2 ,2 2,3 2,4 2,5 2 ,6 f H$(2)
o r

3,5 3,6
U I

H$(3) H$(3,x)� 3, 1 3 ,2 3,3 3,4 r n
... g

H$(4,x)� 4, 1 4,2 4,3 4,4 4,5 4,6 s H$(4)

So you can now see q u ite eas i ly why H$(2,3) and H$(3,2) are so d ifferent.

1 68

)
·'

) .•

)

Question
Look at this progra m :

1 0 DIM S$(3,6)
20 LET S$(1) = " F R EDDY"
30 LET S$(2) = "J E R EMY"
40 LET S$(3) = "JAGUAR"

Write down what you th ink the fol lowing statements wou ld do :
(i) 50 PRINT S$(2 ,3) ft

(i i) 50 PRINT S$(3 ,2) A .
(i i i) 50 PRINT S$(3) ..:J,q'c_,u�i<.
(iv) 50 FOR X= 1 TO 6

60 PRINT S$(3 ,X) ; 4,q� uA tL-
70 NEXT X
80 PRINT

Chapter 9

1 69

Chapter 9

Answer
(i) R
(i i) A
(i i i) JAG UAR
(iv) JAG UAR

How well did you do? I f a l l you r answers were correct, then you 've done wel l . I f some of them were
wrong, read section 9 . 1 /4 aga in . I f they were all wrong, or you just can 't get to grips with these a rrays,
read the whole of section 9 . 1 again . .

9.2 NUMERIC ARRAYS

9.2/ 1 A N OTH ER EXAM PLE

Once aga in , I sha l l g ive you a para l le l example to look at. This t ime, the program comes in two parts . I t 's
qu ite adventurous and i nvolves some interesting techniques, so you ' l l be learn ing a lot from th is
example.

The program is for our postman once more - he's rea l ly having some problems ! Th is t ime, he's using
h is ZX81 to work out fi rst and second class letter rates.

I f you've ever tried to work out how much it costs to send a letter, then you ' l l understand why he
needs a computer to do it ! I t a l l depends on the weight of the letter . Us ing the postage rates set up on
26th January 1 98 1 , a fi rst c lass stamp for a l etter not heavie r than 50 gms costs 1 4 pence. The same
weight of letter, but sent second class costs 1 1 .5 pence.

As the weight of the letter goes up, so does the cost.

Let's look at the first part of the program .

LOAD " C R EATE"

The reason that th i s prog ram is in two parts is s imply because it 's too large to fit i nto the basic ZX8 1 .
You ' l l soon see how it's done.

List the p rogram .

You ' l l see l i nes 1 00 a n d 1 1 0 use the DIM command to set up two a rrays - but here 's someth ing new
- l ine 1 00 does not set up a string a rray. There's no $ symbol . It is sett ing up a numeric a rray. What's
that?

Just as you have seen how a string a rray of 4 strings each conta in ing 6 characters can be defined by
DIM S$(4,6) , so you can define a nu meric array consisting of fou r sets of six nu meric variables by stating
DIM L(4, 6) .

Instead of hold ing characters, the array is holding numbers . We can use any of the 6 * 4 (= 24)
elements just l ike they were numeric variables.

Let's see how this works in practice.

1 70

)

)

)

)

Chapter 9

The G PO letter rates have 1 2 different weight l im its l ike this :

Letter weight 1 st class 2nd class
(gms) (pence) (pence)

50 1 4 1 1 .5
1 00 20 1 5. 5
1 50 26 1 9
200 32 24
250 38 30
300 44 36
350 51 42
400 58 48
450 65 53
500 72 58
750 1 08 87

1 000 1 44 87

If your letter weighs 1 49gms, a fi rst class stamp wi l l cost 26 pence and second class 1 9 pence.
Second c lass max imum is 750gms, and a lthough letters heavier than 1 OOOgms can be sent, th is

part icular program does not cater for them.

So for each of twelve categories, we want to hold three va lues - the weight l im it, f i rst class p rice a nd
second class price . Now look back to l ine 1 00 i n the "CREATE" program. What does it say?

DIM L(1 2,3)

This corresponds to our 1 2 categories with three va lues. The numeric a rray can then be bu i lt up so
that it holds a l l the table shown above. And the program "CREATE" lets you do th is . Carry on for a bit
longer.

L ine 1 1 0 introduces a string a rray of three strings each conta in ing 9 characters.
Lines 1 20 to 1 40 set up the th ree strings in the string a rray.
L ine 200 introduces a FOR loop that cycles 1 2 t imes - once for each category. The control variab le W

wil l be used to enter the three va lues i nto the appropriate category of the numeric a rray.
The crux of the p rogram is in l i nes 220 to 260. These l ines a re a FOR loop that ask for the three va l ues

weig ht, 1 st class rate and 2nd class rate. Let's un ravel this more closely.

Line 2 1 0 in it ial ly sets control variable I to 1 .

L ine 220 then prints the fi rst string (since I = 1) from a rray M$ - this is the string "WE I G HT" - fol lowed
by a semi-colon (more to be p rinted on this l ine) .

L ine 240 asks for a rray e lement L(W, I) to be entered . ,

Variable W is the category number (1 to 1 2 accord ing to the l ist above), and I is currently 1 . So the
a rray element L (1 , 1) wil l conta in the f i rst weight.

L ine 250 takes the next va lue of I (which is 2) .

Back to l i ne 230 aga in , This time the stri ng "1 ST CLASS" is printed , and l ine 240 asks for array
element L (1 ,2) to be entered s ince W is sti l l 1 , but I is now 2. The fi rst class letter rate wi l l therefore be
in L(1 ,2) .

S im i la rly, the second class letter rate wi l l be placed i n element L (1 ,3) .

This is repeated for each of the 1 2 categories .

Run the prog ram and enter the table of val ues g iven above . At the end of the twelfth category, the
program stops . Array L now looks l i ke th i s :

L(1 2 ,3)

1 7 1

Chapter 9

L{x, 1) L(x,2) L(x,3)
L{1 ,x) 50 1 4 1 1 .5
L{2,x) 1 00 20 1 5.5
L{3,x) 1 50 26 1 9
L{4,x) 200 32 24
L{5,x) 250 38 30
L{6,x) 300 44 36
L{7,x) 350 5 1 42
L{8,x) 400 58 48
L{9,x) 450 65 53
L(1 O,x) 500 72 58
L(1 1 ,x) 750 . 1 08 87
L(1 2 ,x) 1 000 1 44 87

Question
What values do the following elements conta in?

(i) L{8,3)
(i i) L{2 ,2)
(i i i) L { 1 ,3)) (iv) L(1 2 , 1)

)

)

1 72

)

)

Answer

(i)
(i i)
(i i i)
(iv)

48 pence
20 pence
1 1 .5 pence
1 000 gms

You can check any of these by PRINTing them - e .g . try th is one : type

PRINT L(8,3)

I f you 've set things up p roperly when you entered the values. it wil l print 0 .48.

Chapter 9

H ow did you manage with those ? If you had problems, then read section 9 .2/1 over again, paying
careful attention to the workings of the "CREATE" p rogra m .

9.2/2 MAKING USE OF THE ARRAY

Now on to the second part of the postage rates program. The fi rst part has a l lowed us to create two
a rrays - L, conta in ing the weight, 1 st and 2nd class rates for each of twelve categories, and M$ which
contains three strings "WE I G HT", "1 ST CLASS" and "2ND C LASS" .

S ince the fi rst p rogram i s not real ly needed any more (how often d o we need to set up the rates?) a l l
these program l ines can be deleted . When th is is done, you must be very careful not to use the
commands RUN and CLEAR. These commands wi l l remove any variables, so destroying a l l the hard
work so far !

I t doesn 't matter that there i s no program inside t h e ZX81 - a l l the variables a re sti l l there ! Prove it for
you rself i f you want to - delete a l l the l ines in the p rogram and then type :

PRINT M $(1)

. . . and the ZX81 wi l l p rint W E I G HT. Remember back to Chapter 1 where we used LET as a d i rect
command to store a variab le .

We can now type in another program, and those two a rrays wi l l sti l l be there for the new program to
use as it wishes !

We can even save them on tape - in fact, a lthough they can't d i rectly be seen, we can use them in
any way at a l l .

·

There is only one othe r command to watch out for. If the program meets another DIM statement for
the same a rray that it has a l ready got, then the old a rray is clea red out. All the strings (in a string a rray)
a re set to spaces, and a l l the values (in a numeric a rray) a re set to zero.

There is no need to keep you r a rray created in the p rogra m " C R EATE", as I have a l ready done th is for
you . The second part of the p rogram is also on tape :

LOAD " RATES"

Once aga in , the p rogra m automatical ly starts. Th is he lps to stop you from typing RUN .
T h e program invites you t o enter a weight, then i t p rints the corresponding fi rst a n d second class

sta m p values.
N ot bad, eh?
Take a look a t the p rogra m l ist ing. Notice that there is no DIM statement - see above. Yet the

p rogram sti l l refers to a rrays L and M$ qu ite happi ly.
I ' m not going to unpick this p rogram for you - it's q u ite easy and should not cause you any p roblems.

I t i s beyond the scope of th is course to show you how to get the most out of the basic ZX8 1 (in terms
of the size of program you can write), but what we have done with these two programs " C R EATE " and
" RATES" is one very good way of gett ing a larger program to fit inside the ZX81 than would normal ly be
possible. I f you a l ready have the RAM expansion pack, then these two programs would not real ly have
been split into two, but th is course is i ntended to work for any ZX8 1 .

1 73

Chapter 9

Question
Name three ways in which an array can be removed from the ZX81 .

1 74

)

)

')

)

Chapter 9

Answer

1 . The RUN com mand.
2 . The CLEAR command.
3 . The DIM com mand (on ly when the same a rray name is used) .

If you r answer was wrong, then read section 9 .2/2 aga in .

9.2/3 AN ALTER NATIVE VIEW

One f inal program for you on a rrays . Th is prog ram doesn't do m uch at a l l - it's designed to g ive you a
different view of a rrays and hopefu l ly to g ive you something useful for certa in types of games that you
may write .

Way back in Chapter 5, section 5 . 1 , you were shown a method of making a numeric variable a lternate
its value between 0 and 1 . The text even told you that this would come in handy!

The method was :

50 LET P = 0 in itial va lue

200 LET P=(P=0) 0 becomes 1 , 1 becomes 0

H ere's a good way of us ing a rrays combined with this feature .
Suppose you want to write a game that involves two players . The p layers cou ld be you and the ZX8 1 ,

or you plus a fr iend - it doesn't matter.
Most games involve keeping a score of some sort - your s�ore and your opponent's score.
This is where a numeric array can be handy. Instead of setting up two variables, one for you r score

and one for you r opponent's, c reate a two element a rray using DIM. Have a look at what I mean :

LOAD "STRATEGY"

Line 1 0 sets up an a rray to hold the scores, and l ine 20 init ia l ly chooses player nu mber 1 .
Lines 1 1 0-1 30 pr int out the scores of both players - S (1) holds the score of player 1 , and S(2) holds

the score of player 2.
Lin e 1 40 tel ls the next player (which could be 1 or 2) to make h is/her/its move.
Line 200 is merely a REMark to tell you that your ma in game program wou ld go here.
Line 300 adds the score (which is whatever you entered for "move") into the appropriate player's

score . Look carefu l ly at this l i ne .
Line 310 swaps the player from n umber 1 to nu mber 2 or from number 2 to number 1 . I t is s l ig htly

d ifferent from the example above, but the same logic is at work.
Lin e 320 j um ps back for the next player's move .
Try runn ing it . Enter some numbers in at each move, and you ' l l see the scores go up accord ing to

whose turn it was.
The variable names in this p rogram a re a l l qu ite long just to make it a l l c lea r for you , but there's no

reason why you can't use just the letter "P" for your version.

Question
Just to give you a comparison, try writ i ng the same program without using a rrays. Use two variables

to hold the scores - P1 for 1 , and P2 for player 2 .

1 75

Chapter 9

Answer
Here's one solution :

20 LET PLAYE R = 1
3 0 LET P1 = 0
40 LET P2 =0

1 00 CLS

" in it ial player
clear scores

1 1 0 PRINT AT 1 0, 0 ; " PLAYER 1 " ,P 1 player 1 score
1 20 PRINT AT 1 1 ,0 ; " PLAYER 2" , P2 player 2 score
1 40 PRINT AT 2 1 ,0 ; " PLAYER "PLAYE R ; " TO MOVE"
1 50 INPUT M
300 IF PLAYE R = 1 THEN LET P1 = P 1 + M
305 I F PLAYE R=2 THEN LET P2 = P2 + M
3 1 0 LET PLAY E R = (PLAYER= 1) + 1
320 GOTO 1 00

add to player 1 score
add to player 2 score
swap player
next move

How did you get o n ? Once you 've started to use a rrays, i t becomes qu ite hard to see any other way of
writing programs.

If your answer wasn't complete, or you couldn't answer, then you should read some of the earl ier
chapters once more . Obviously, I don't expect your answer to match mine, or even for you to write it a l l
down as fu l ly as I have. I f you ' re in any doubt about your own prog rams then you should type them in
and try to run them . Keep changing them u nt i l they work !

If you 're happy with your version, then that's good enough .
Apart from the fact that the version of th is program on tape has some extra REM statements, it i s

much more compact than the version given above.
They are both fairly easy to read and fol low, and which version you prefer is just a matter of taste. But

consider the same prog rams written for a four-player game. Which vers ion wou ld you prefer then?

9.2/4 MULTI-DIMENSIONAL ARRAYS

You 've seen how a rrays can take on one or two d imensions - the array used i n " RATES" is a
two-dimensional array - so it's rea l ly only an extension of this to say that arrays can have as many
d imensions as you wish ! There is a l im it of course, but the l im it is that of the room ins ide your ZX8 1 to
be able to hold the array.

It gets extremely hard to imagine a mu lti-d imensional array, so perhaps I can paint a smal l scene in
order to help you .

I magine a smal l boy who finds a handfu l of conkers and puts them i n h is pocket. Then he goes back to
h is home where he meets with h is brothers and sisters. If we now wish to see how many conkers one
of these ch i ldren holds, we obviously need to consider which ch i ld we are referring to - any one of them
might have a pocketfu l of conkers ! Assume our particu lar boy i s the second oldest :

DIM CON KERS (fami ly size)
LET CON KERS (2)= 1 7

fth is won't work, it 's an
1 example only !

This second l i ne wou ld set up the number of con kers that the second ch i ld in the fam i ly holds.
But th i nk of al l the houses in h is town ! Each house holds a fami ly, so we must identify the actual

house he l ives in - perhaps it's the tenth one as you drive into town :

DIM CON KERS (houses, fam i ly sizes)
PRINT CONKERS (1 0,2)

. . . and th is would show how many conkers the second boy in the tenth house holds.
But what about a l l the towns in the country? I t could be any one of them. Looking through the

a lphabetic l ist in the AA Handbook, we see that this town is the forty-th i rd :

1 76

DIM CON KERS (towns, houses, fam i ly size)
PRINT CON KE RS (43, 1 0,2)

)

)

Chapter 9

Then consider a l l the d ifferent countries in the world - again, we must be sure to say which co untry
we a re referring to :

DIM CON KERS (countries, towns, houses, fami ly size)
PRINT CONKERS (1 07,43, 1 0,2)

I should hope that you ' re getting the idea by now. The point i s , we can look to see how many con kers
(or array element) a re held by any ch i ld i n any house i n any town i n any cou ntry in the world ! Just use the
DIM statement to set up the requ i red n umber of d imensions, then refer to the particu lar e lement by
g iving success ively more deta i led subscripts.

Arrays have many uses in computer programm ing and I hope that the three d ifferent examples you've
seen in th is chapter wi l l g ive you a good g rasp of their workings.

Summary
This chapter has on ly dealt with arrays (with one or two smal l d igressions), and as mentioned at the

beg inn ing, a rrays a re the last fu l l topic to cover in the course.
Next we look at some complete programs of different types which wi l l g ive you an opportunity to see

some ideas put into p ractice. There a re sti l l more functions to be studied, so don't c lose the book just
yet !

What have we covered ?

- string a rrays, and how they a re used to hold a quantity of independent strings, each individua l ly
accessible.

- the concept of a subscript, which q ua l if ies the a rray element that we wish to obta in .

- numeric a rrays, how they a re used i n p ractice and how they can reduce the amount of programming
requ i red to ach ieve certai n resu lts .

- how m u lti-d imensional a rrays can be pictu red.

Exercises
1 . Write a p rogram that asks for ten fou r-letter words to be entered. The program then p rints the words

out in a lphabetica l o rder. You wi l l need to be aware of the ideas covered in Chapter 8 , section 8 .2 .

2 . Th is program is a usefu l a i d to code-breakers ! Ask for a string to be entered, then ana lyse the
frequency of the letters in the string (beware of spaces in the string !) You should a l low the p rogram
to count the nu mber of occu rrences of each letter, then print either a l ist, or (if you have enough
memory) a bar chart, showing the distribut ion. Th is should then assist you in break ing a code, as the
letter " E " wil l norma l ly be the most common letter (assuming the string is Eng l ish) .

3 . For those who love yacht racing, try to write a prog ram which records the t imes of each yacht as it
arrives . The p rogra m wi l l need to convert hours, m in utes and seconds into seconds, then d ivide by
the Portsmouth Yardstick (a preset handicap for each boat), and f ina l ly express th is back into hours,
m inutes and seconds . Your prog ram should print the boat numbers and corrected t imes.

4 . Continu ing from exercise 3, rank the resu lts obta ined into "t ime" sequence, where the lowest t ime
is the f i rst resu lt . Pr int the top ten resu lts obta ined i n th is way .

5 . Write a routine which searches for one string inside another. For exa m ple, if string A$ conta i ns "CAT
DOG", and the rout ine is asked to sea rch for "DOG", then it wi l l g ive a reply of " I FOUND IT" .

You may l i ke to i ncorporate this rout ine (or a s im i la r one) i n some of you r future progra ms, as it is
extremely usefu l in a program which rel ies on textual repl ies to questions, such as a q u iz game, o r a
tutorial p rog ram . The routine can "scan" an answer to see if the appropriate " Keyword " was
entered, ignor ing a l l the other words .

1 77

0

0

)

)

)

Chapter 1 0

From Theory Into Practice
This chapter covers complete examples of programs in use, both games and p rog rams of a more
serious nature.

The chapter is divided into four sections. In the fi rst section, you wil l f ind ways of making the
computer unpredictable, and see how this can turn the ZX81 i nto a t i reless opponent.

Each of the other sections looks at a ful l program contained on cassette, showing you what the
program sets out to ach ieve, and how I have set about writ ing it . You wil l be g radual ly l ed through the
program, investigating the more important aspects of its workings. Section 3 in particu lar a lso covers
the idea of an interactive p rogram, introducing an important new fu nction .

1 0. 1 RANDOM N U MBERS

1 0. 1 / 1 HOW THEY ARE OBTAINED

One stumbl ing b lock that prevents you from wading in and writ ing your own games is that the computer
is predictable. Any program that you have written up unt i l now has consisted of predictable resu lts from
your own i nput. As an example, the early a rea programs l i ke "AREA 1 " always p rod uce the same resu lts
from the same i nput (the a rea of 20* 1 0 must a lways be 200) .

If we want to play against the computer, then it must become unpredictable - it isn 't much fun playing
games with someone when you know what the next move wil l be !

The reasons for winn ing a game a re many - sometimes it's pure luck, sometimes sk i l l , and
sometimes because the other player made a stupid m istake.

Once again, this chapter concentrates main ly on complete p rograms so that you can see someth ing
l a rger than just a few l ines strung together. I t i s i mportant at th is stage that you can work your way
through a p rogra m to f ind out how it works and then be in a position to make some changes to it so that
it works the way you want it to.

F irst let's consider how to make the computer unpred ictable . Th is is where random numbers come i n .
What is a random number? Whether o r not you have any premium bonds, you a re probably aware of

E R N I E , the machine that selects winn ing premium bond n umbers at random. It does this by generating
a tota l ly random number, which is then converted into a bond number. The ZX81 can also g ive a number
at random. You can , therefore, use a random number to start a game off - the outcome is then
unpredictable s ince you have no idea what numbe r the ZX81 is going to pick.

The function
RND (under the T key)

g ives a random number somewhere between 0 and 1 (there is no expression fol lowing the function
name) .

Every t ime RND appears in a program a d ifferent number w i l l be given . Try th i s example progra m :

1 0 SCROLL
20 PRINT RND
30 GOTO 1 0

When you run it, you ' l l see loads of d ifferent numbers appearing - yet the program remains the sam e !
Notice how each n umber i s smal ler than 1 , and none of the numbers a re negative. You could sit a l l day
watch ing them, but you wou ld n 't spot any pattern .

But surely the ZX81 can't make th ings u p o n its own ? I f i t could, then the conclusion to reach i s that
someone has bu i lt a computer that can think for itself !

Wel l , don't worry - they' re not going to take over the world just yet ! The ZX8 1 gets its random
number from a big l ist of numbers that it can work out us ing some com pl icated mathematical form u l a .
This l ist i s extremely long, which is why you can 't s e e a n y pattern when t h e program above is runn ing .

1 8 1

Chapter 1 0

This series means that you can get the same set of events twice - whenever you load a program after
switching the ZX8 1 on, the RND function wi l l start g iving the same set of numbers . Fortunately, there is
another way of making RND g ive d ifferent resu lts even under the same conditions. There is a command
cal led

RAND (on the T key)

and it a l lows the ZX81 to start its random numbers at a different point in the series . This way, the
starting point is determ ined from the TV - the ZX81 counts how many screen frames have been sent
out s ince it was switched on. And that's bound to be random !

You can a lso use the RAND command to make the ZX8 1 g ive the same set of random numbers each
time - if you put any number fol lowing the command RAND, it tel ls the ZX81 to start at that number in
the series. Try this :

5 RAND 1
1 0 FOR X= 1 TO 20
20 PRINT RND
30 NEXT X

You can run this p rogram over and over aga in , and it wi l l a lways print the same numbers out.
So why have random numbers and then make them print the same set over again ? I t doesn't make

sense, does it?
Yes - in certa in p rog ra ms, you want to be able to do the same things twice - l i ke starting a game

again with the same board positions so that you can see where you went wrong. Yet you wou ld sti l l
want the same "random moves" to take p lace.

Question
The RND function a lways g ives a number between 0 and 1 , although it cannot take the va lue 1 . Can you
write a program that wi l l g ive a random number between 0 and 20 in a variable named R ?

1 82

)

)

,)

)

)

)
/

Chapter 1 0

Answer

1 0 RAND
20 LET R=RND*20

Line 1 0 is not strictly necessary, but I 've put it i n for now.
The program works because RND is a lways less than 1 , and 1 *20 is 20 - so the h ighest value that R

could take is 1 9.9999.
How did you do? I f you r answer was wrong, don't worry - it was merely an exercise in th inki n g .

1 0. 1 /2 USING RANDOM NUMBERS IN GAMES

Let's just study what games p rog ramming is a l l about.
Basica l ly, there a re three types of games programs, and I ' l l g ive you an exa mple of each type so that

you 9et an idea of what I mean :

strategy games Chess is a pr ime example of this type of game. I t i nvolves a h igh
degree of sk i l l to write good games in th is category, and apart from one
or two s ma l l games l i ke " N im" or " Noughts and Crosses", most wi l l
be beyond the l im its of the ZX8 1 without the use of the 1 6K RAM pack,
as these programs tend to be large .

"h idden code" games " Mastermind" and " Hangman" a re typical of this category, in fact any
game which i nvolves you in d iscovering something that the ZX81 has
previously h idden.

i nteractive games The c lass ic interactive game is "Space I nvaders", where the game is
constantly moving and the player can contro l the game with various
"movement" keys .

Th is chapter deals with two games of the "h idden code" and i nteractive category, s ince strategy
games a re heavi ly dependent on the particu lar game, with genera l rules hard to identify. I f you f ind
yourself becoming i nterested in strategy games, there a re many good books written on the subject,
mostly avai lab le from mai l order f irms.

1 0. 1 /3 A WORD OF ADVICE

You s hould avoid, i f possible, fal l ing into the trap of using you r ZX81 only to run games and programs
that you f ind i n magazines and books. Try to create you r own . They' re so m uch more fun when they a re
your own handiwork, and they' l l have taught you much more than just s imply how to copy from a typed
page. Of course, looking at other people's programs is an essential part of learning how to write your
own, but it i s very easy to forget that you have bought someth ing a long way removed from a TV game !

1 0.2 A FULL PROGRAM (1)

The fi rst p rogra m we' re going to study is a "h idden code" game. One of these - the most widely run on
computers - is " M astermind", and I have put a version of th is i nto the course.

Since the game i s qu ite la rge, the game wi l l g ive report 4 after 1 0 attempts at breaking the code . I f
you a re u naware of the ru les of Masterm ind, then read on . I f you know the ru ies, carry on with the n ext
section .

1 83

Chapter 1 0

1 0.2/ 1 TH E R U LES

This vers ion o f the ru les is fai rly condensed, a n d you are advised to buy the game (it 's only a couple of
pounds) if you want the fu l l set.

The computer chooses four coloured pegs at random. You r job is to guess what the four coloured
pegs are. The pegs can be colou red Red, Orange, B lue, G reen, Yel low or White.

You make a guess at the hidden code, and the ZX8 1 tel ls you whether your guess is correct or not.
However, the answer also g ives you clues as to whether or not you a re on the right track.

I f you r guess has a peg of the same colour in the same position as the ZX81 code, then you get a black
peg in return . I f your peg is of the correct colour but in the wrong position, then you a re g iven a white
peg in return , When you a re g iven four black pegs, you have won (since you have got a l l the right colou rs
and the r ight order) . As an example, let's suppose the ZX81 has hidden the pegs " Blue, Red, G reen,
Yel low" . The order is important.

H idden cod e : Blue Red G reen Yel low

Your guess Reply Reason
B W Y 0 1 B and 1 W Your guess of blue corresponds to the ZX81 hidden code. I t is also i n

the correct position, s o you get a black peg (1 B) . T h e White is wrong,
as is the Orange. Yel low is a correct colour, but in the wrong position,
so you get a white peg i n return (1 W) .

B G R Y 2 B and 2W Blue and Yel low are both in the correct position so you get two black
pegs (2B) , but a lthough G reen and Red a re the correct colou rs, they a re
the wrong way round, so you get two white pegs for these (2W) .

B R G Y 4B and 0W You have won . All the pegs a re the correct colour and correct matching
posit ion.

Not a l l the games a re as qu ick and easy as that exampl e !

1 0.2/2 TH E PROGRAM

Load the game by:

LOAD "MASTER M I N D "

R u n the progra m . The ZX81 hides a four colour code . The avai lable colours are : Red, G reen, B lue,
Yel low, O range, White.

You on ly enter the fi rst letter. The ZX81 asks you for you r guess, and you type in a four-letter string
consisting of the i n it ia ls of the four colours you wish to guess. The ZX8 1 tel ls you how many black and
white pegs you would receive for that guess.

As an example :

G U ESS : RGBV 1 B + 0W
G U ESS : OVBW 1 B + 2W

and so o n . Enter N EWL I N E after each guess. If you use more than 1 0 guesses, you ' l l get report 4, but
you can cont inue by typ ing CONT.

When you 've played it to death, have a look at the l isting of the progra m . There is noth ing new at a l l i n
this game - everyth ing i n i t has been covered in previous chapters.

Try to understand some of the various routines in the program so that you are able to use them
yourself i n other programs .

1 84

)

)

")

)

\
j

)
,<

Chapter 1 0

Question
These questions a re to make you th ink about the workings of the MASTE R M I N D program . There is no
point i n just playing the game - it is a lso there for you to study and lea rn from . Anyone can copy games
and play them. but the real fun is i n writing your own . The pu rpose of inc lud ing a couple of games is to
give you a bit of fun while you learn.

(i) Take a look at l ines 50 to 70 in the MASTE R M I N D program . Can you say what they a re do ing?

(i i) What is the pu rpose of l i ne 6 1 0 ?

(i i i) What about l i ne 1 40 - why i s i t there ?

1 85

Chapter 1 0

Answer

(i) The FOR loop bui lds up the h idden code in string variable C$. It selects a random letter from string
Z$ (which conta ins the ava i lable colours) and adds it to the end of the C$ string so far. The INT
function makes sure that a whole number is g iven after mu lt iplying RND by the length of the Z$
string . Add ing 1 to it makes the answer a nu mber between 1 and LEN Z$. Otherwise you would
get a report 3 on occasions where the program would try to take a letter out of Z$ which d idn't
exist.

(i i) Th i s l i ne checks to see if the last guess gave four black pegs as a reply, and if so, then it stops the
p rogra m . Four black pegs means that your guess was correct . You have therefore won .

(i i i) L ine 1 40 makes sure that you r guess contains the correct number o f letters - i .e . four. I f you only
type th ree colours i n a guess, or f ive, then this l ine wi l l catch you out and ask you to enter another
guess. Not ice that the program does not check whether the letters i n you r guess a re va l id colou rs .

How d id you fare with those? They were del iberately searching so that you would spend a bit o f t ime
understand ing how the program works . I f you were struggl ing, then perhaps the solutions have he lped
you a bit.

If you had trouble fol lowing what was going on, then perhaps you should refer back to one of the
chapters that i ntroduced the topic caus i r)g you a problem . Chapter 3 covered GOTO and IF, whi le
Chapter 4 introduced FOR. Strings were main ly dealt with in Chapter 8 .

I t may have taken qu ite some t ime to understand the program - a coup le of hours even , but
understand ing is the key to gett ing on .

1 0.3 A FULL PROGRAM (2)

1 0.3/ 1 I NTERACTIVE PROGRAMS

Now for a look at an interactive game. This category is currently the most popu lar since the introduction
of "Space I nvade rs", but in the long term, these games can become rather boring once the method has
been broken. They normal ly involve qu ite n ice g raphics (look back to Chapter 5 for these) and can g ive
you some " instant" fun . Since this type of game is being contin uously played whi le looking at the
screen, it must be written to run in a certa i n mode.

Question
Which mode must the ZX81 run in to play i nteractive games?

1 86

)

)

Chapter 1 O

Answer
SLOW mode. Th is is not strictly true, as some games can be written which try to get round the p rob lem
of the display go ing b lank i n FAST mode, but it's never qu ite the same ! Reserve FAST mode for games
and programs which do not need to be constantly watched - and also for edit ing programs.

1 0.3/2 HOW TO INTERACT WITH A PROGRAM

There is one other problem associated with interactive games - as they a re being played, you are ab le to
press certai n keys to a lter the movement i n some way. How can we do th is? I f an INPUT command is
used , the whole program wi l l g ri nd to a ha lt !

The answer is a function ca l led . . .

INKEY$ (under the B key)

This function is extremely valuable for interactive games. Notice that it has a $ symbol in its name, so
it must be a string function . What does it do?

The INKEY$ function has a look to see if any key is being pressed, and if it is , then it g ives the
character correspond i ng to that key. I f there is no key being pressed, then it g ives an empty string -
length zero.

Try this :

1 0 PRINT INKEY$;
20 GOTO 1 0

(don't forget the semi-colon)

I t wi l l pr int whatever key you now press . Notice several th ings about INKEY$. If you press more than
one key at a t ime, then the ZX81 wil l not let this through . The program stops just as if you were not
pressing any key at a l l . Second ly, that i t keeps going for as long as you keep you r f inger on the key. Th is
is because the INKEY$ funct ion has a look every time it is obeyed. This g ives you an idea of how fast the
ZX81 is running in SLOW mod e !

Question
Write a program that sits with a b lank screen. Whenever a key is pressed, the program prints " G ET
OFF" in the centre of the screen. As soon as the key is no longer p ressed, the screen goes blank aga in .

H int : look at page 1 29 of the S i ncla i r Handbook.

1 87

Chapter 1 0

Answer
Here's one answer for you to study :

1 0 PRINT AT1 1 , 1 3 ; " (print 7 blank spaces i n the centre of the
screen)

20 IF INKEY$<>" " THEN PRINT AT 1 1 , 1 3 ; "G ET OFF"
30 IF INKEY$<>" " THEN GOTO 20
40 GOTO 1 0

A sl ight ly more elegant solution i s :

1 0 PRINT AT1 1 , 1 3 ; "
2 0 IF INKEY$ = " " THEN GOTO 1 0
30 PRINT AT 1 1 , 1 3 ; "G ET OFF"
40 GOTO 20

(7 spaces again)
(i f no key pressed, wait)
(g ive fai r warning)
(have a look to see i f it 's sti l l
there . . .)

How d id you r answer work? If it went wel l , then you've obviously got the message with INKEY$.
If you cou ldn 't get it to work, or you just d idn 't understand, then read section 1 0 .3/2 once more.
The fi rst solution has a s l ight problem in it . Lines 20 and 30 both use the INKEY$ function, but as you

have a l ready been told, th is function g ives the key character being p ressed at that time. So it is qu ite
possible for a d i fferent key to be p ressed between l i nes 20 and 30. I t doesn't make any d ifference to th is
part icular p rogram as it isn 't concerned with which key is pressed, only that a key is being pressed.

Another program m ight not work i f the two INKEY$ functions gave d ifferent resu lts, so whenever the
program i s checking to see which key is being pressed, first store the INKEY$ value in a string variable
and test that i nstead. The f irst solution would then be written as :

1 0 PRINT AT 1 1 , 1 3 ; "
20 LET K$= 1NKEY$
30 IF K$<>" " THEN PRINT AT 1 1 , 1 3 ; "G ET OFF"
40 IF K$<>" " THEN GOTO 20
50 GOTO 1 0

Persona l ly, I sti l l p refer the second solution . . . somehow it seems less clumsy, and although both
programs work, part of the appeal of programming is one of taste. When you 've become more fami l i a r
with programm i ng, you ' l l f i nd that some programs seem awkward and d isorganised, wh i le others have
a sort of beauty and s impl icity that catches your eye. Yet both probably work just as wel l .

1 0.3/3 THE PROGRAM

Now to another complete program . This is an i nteractive game for one player.

LOAD "ARCH E RY"

The object of the game is to shoot an a rrow i nto the target. You a re positioned on the left-hand side of
the screen (the b l inking blob - that's not an insu lt !) whi le the target is on the right-hand side.

You may use the "6" key and "7" key to move up or down. When you th ink you a re opposite the
target, press the "0" key to release you r a rrow.

You can have another go by p ressing any key - except B R EAK, of cou rse . Try the game out before you
look to see how it's written . That way you ' l l have an idea of what's going on. Before you l ist the p rogram
(use B R EA K to stop the program when you ' re fed up) , type . . .

CLEAR

This way, a l l the variables used by the p rogram a re removed, and you ' l l get more of the program
l isting on the screen.

1 88

J
/

)

)

)

Chapter 10

The program combines several techn iq ues that we've covered throughout the course - here's a l ist of
them and the corresponding l ine n umbers :

feature

functions
random numbers
graphics/plotting
condit ional statements
FOR loops
interaction
print formatt ing

Not bad for a fai rly s imple progra m ?

l i n e numbers

1 0, 20, 1 00, 400
5, 1 0, 20
50, 60, 1 60 , 1 80, 200-220
1 20--1 50 , 3 1 0--400
200--220
1 00, 400
300--320

Just to help you u nderstand the workings a bit more, the target position is calcu lated i n l i nes 1 0 and
20. Variable TY holds the vert ical position , and TX the horizonta l . The on ly reason for moving the target
horizontal ly is so that you can't get used to " l in ing" the sights up on the edge of the screen all the t ime .
I t makes the program a b i t more variable .

You cou ld change the program so that the target moves one position up or down at random every 1 0
t imes round the main loop of the progra m . That means that you would also have to time the shooting of
your a rrow more precisely.

Another alteration is to make it so that the arrow wil l not go far enough if you wait too long before
firi ng . This would g ive the game a more exciting pace.

The l ist is qu ite endless - each change wi l l make the game s l ightly d ifferent in the way you play
against it some better, some worse, but it's a fun way of learn ing .

1 0. 3/4 TYING UP A LOOSE END

There was one other program that was i ntroduced earl ier i n the course - "TRACE" . This program was
not stud ied at the time as it contained several features that hadn't been shown to you . N ow that you are
a lmost in control of the ZX81 it is the right time to go back and take a closer look at this in a d ifferent
l ight.

LOAD "TRACE "

If you can 't remember what the program does, then I ' m not going to tel l you ! I t still conta i ns a
funct ion that you haven't met and you won't meet th is command unt i l the next chapter. To put your
mind at rest, l i nes 30 to 60 determ ine how big the "drawing board" can be on the screen . I f you have a
basi c ZX8 1 , then XL and YL wi l l be set to 43 and 1 6 respectively. If you 've bought the 1 6K RAM
expansion pack, then XL and YL a re set to 63 and 0 . The reason for doing this is that the bas ic ZX81
would g ive error 4 if the drawing board took up the whole screen, so I have had to restrict it s l ightly. XL
and YL a re the maximum l im i t of the X and Y coordinates of the screen .

Question
This q uestion is to try and make you th ink of how to use "moving" graphics in a program .

Write a program that makes a two-by-two black blob move across the screen from left to right. The
blob can be e ither plotted or d rawn using PRINT com mands.

1 89

Chapter 1 0

Answer
This answer uses PRINT AT to do the job:

1 0 CLS
20 FOR X=0 TO 30
30 PRINT AT 1 1 ,X ;
40 PRINT AT 1 2,X ; "••"
50 IF X=0 THEN GOTO 1 00
60 PRINT AT 1 1 ,X - 1 ; " "
70 PRINT AT 1 2,X- 1 ; " "

1 00 NEXT X
1 1 0 IF INKEY$= " " THEN GOTO 1 1 0
1 20 GOTO 1 0

(reset screen)
(a l l the way across . . .)
(print top row of blob)
(print second row)
(is it first t ime a round?)
(if not, b lank out last ha lf of blob)
(on both rows)
(a l l the way across)
(wait for a key . . .)
(start again)

If your solution used PLOT and UNPLOT you r blob wi l l be only one q uarter the size of m ine and move
half as s lowly.

Did you forget to "wipe out" the tra i l as the blob moves across the screen? I added the extra l i nes at
the end of my program so that I could keep running it just by pressing any key at a l l . This makes it s l ightly
easier to use and saves hunting for RUN each t ime.

1 0.4 A FULL PROGRAM (3)

The th i rd (and last) com plete program I ' m going to go through with you is certa in ly not a game.
Unfortunately, the program wi l l only work when a 1 6K RAM pack is fitted to the ZX8 1 , so if you haven't
got one, then I ' m afra id you ' l l need to skip th is sect ion.

The prog ram is for handl ing home finances, a l lowing you to run a budget account on you r ZX81
instead of paying £20 per yea r for the privi lege of the same th ing from a major bank .

Each month, after you receive you r bank statement, total the amount of a l l cheq ues d rawn on you r
account.

Enter this figu re, along with any additional income (the program automatical ly credits you r bas ic
income) and you wi l l be g iven a complete balance sheet of you r f inances, inc luding any standing orders
paid, spread payments (budgets) and detai ls of your income . After each run, the program i s saved back
on tape again vyith all the latest deta i l s of your account, so that the next monthly run can carry on from
where it left off.

In it ia l ly, though, you need to enter the deta i ls of you r current bank balance (as g iven at the end of your
previous statement), deta i l s ot a l l income, standing orders, and any budgeted items that you wish to
spread the cost of over a period of months.

LOAD " F I NANCE"

Run the p rog ram . There a re many questions asked of you as you go through the progra m , and at each
stage you should answer "YES" or "NO" (the fi rst letter only is al l that's necessary) accord ing to
whether you wish to a lter some deta i ls or proceed to the next stage.

F i rst, enter you r cu rrent balance. Next, you wi l l be asked if you wish to a lter you r i ncome deta i ls . You
should answer "YES" at th is stage.

Each item has some text to describe it (this is printed on the balance sheet) and a value corresponding
to it . You may a lter the text, the va lue or both . Watch the questions on l ine 21 - they ask you if you wish
to a lter text or value. You do not need to answer yes or no, merely type the text o r value and p ress
N EWLI NE .

I f you wish to a lter these deta i l s at a later date, you can leave the item unchanged by just pressing
N EWLI N E and. p roceed to the next item.

Try entering some dummy text and values in it ial ly, just to get tpe hang of i t .
The next stage is to enter deta i ls of a l l the standing orders in your account. This would include items

such as mortgage, rates (i f paid monthly) , HP agreements, insurance - in fact anything that is paid

1 90

)

)

)

)

Chapter 1 0

monthly d i rectly from you r account. You need to enter the number of items, since the program sets u p
an a rray a t this stage for the appropriate number .

Enter text and va lues in the same way that you entered your i ncome deta i ls .
Last of a l l , you can (optional ly) enter deta i ls of items that you wish to budget over a period of months .

Items i n th is category would b e gas, e lectricity, telephone, hol idays, subscriptions, rates (i f pa id
half-yearly) - anyth ing with a non-monthly payment period.

Work out how much the item would cost if paid monthly, and enter this amount as the budget va lue
(budget accounts in major banks adopt the same principle) .

Once this has been done, you do not need to enter these deta i l s aga in - they a re saved with the
program each t ime. Th is means you can j ust change one i tem (e .g . you r i ncome) without affecting a l l the
other deta i l s you've carefu l ly entered .

Now the program g ives you a "menu" of options . Choose one of these - you can :

(1) F I N ISH
(2) E NTER M O NT H LY VAR IABLES
(3) ALTER PRES ENT DETAI LS
(4) P R I NT BALANCE S H E ET

Normal ly, you wi l l run option (2) to enter the date, any additiona l i ncome this month, and the total
amount of cheques d rawn this month.

Run option (4) to pr int a balance sheet. Notice that the program keeps two tota ls - you r actual ban k
balance (brought forward from the last run) and a "budget balance" . This represents the amount of cash
you would have if a l l you r budget items were paid monthly - it's a bit l i ke putting the money aside u nt i l
the b i l l a rrives.

All items a re l isted with a s ing le code letter in the f i rst column of the screen that ind icates the type of
item :

I i ncome items
S standing o rders
C cheques total
B budget items

The tota ls at the end show you r new actual and budget balances .
When a b i l l a rrives for an item that is budgeted, the money has effectively been taken out a l ready (th i s

is reflected in the budget tota ls) , and so you r actual balance wi l l be reduced towards the budget balance.
Th is budget balance gives you a m uch more rea l istic idea as to the amount of cash you have to hand.

The d ifference between the actual ba lance and budget balance is the total of pending b i l ls - don't be
tempted to spend this !

There wi l l come a t ime when you rea l ise that you r estimates of budgeted bi l ls were s l ightly
inaccu rate, and so you have more o r less cash ava i lable than you thought. When you run option (2) to
enter you r monthly variables, you wi l l a lso be asked if you wish to adjust the brought forward budget
balance. On ly a lter it if you feel it is d rifting wi ld ly away after several bi l ls have a rrived .

Whenever you pr int a balance sheet, the prog ram asks if you wish to update the tota ls . If the sheet
looks O K, then answer "YES". Prepare a tape (not the one you've just loaded from - what happens i f it
fai ls to "save" p roperly?) and the program wil l automatical ly save itself.

At this stage, i t also sets you r cheque total to zero, and clears the date. If you now run a new balance
sheet, you a re seeing an estimate of next month 's expenditu re - a forecast of cash ava i lab le . Don't save
it aga in , just take note of the information i t g ives you . I f you have a p rinter, then this program is idea l ly
made for it !

I 'm not going to unravel this program in the text - I wi l l leave it ent i re ly in your hands to see how I have
approached a more serious use of you r ZX8 1 .

The only port ion of it that is i ntrigu ing i s the balance sheet. Notice that a l l the amounts a re printed i n
neat columns with two places o f pence (you should know by now that the ZX81 never pri nts decim a l

1 9 1

Chapter 1 0

places un less they exist). and the items a re a l l a l igned at the right-hand side, l i ke this :

1 23.45
2 .00

60 .50

I f these items were just PRINTed, they would appear a s :

1 23.45
2
60 .5

Have a th i nk about- how you wou ld achieve the same effect, then look to see how I have done it .

Summary
This chapter has been fa i rly easy in comparison with some ear l ier ones, but it has g iven you the chance
to see three complete p rograms at work, and maybe you 've had a laugh on the way !

Next you ' l l be learning a bit more about the way your ZX8 1 works and learn a smal l amount about two
functions and one command that i ntr igue nearly every newcomer.

But here a re the various points you should have lea rned :

- that the computer can be made unpredictable and that th is can have benefits i n creat ing certai n
types o f programs.

- that a prog ram can be written which rel ies on i nteraction to control the program flow.

- how the ZX81 (or, indeed, any computer) can be used to solve not just arithmetic problems, but a lso
more genera l types of problems that occu r in everyday l ife.

Exercises

1 . Write a p rogram to handle fu l l metric convers ion. The p rogram should be capable of converting
inches to centimetres (and vice versa), pou nds to kilos, p ints to l itres . It wou ld i n it ial ly ask which type
of conversion is requ i red, then ask for a value . The converted resu lt wou ld be give n .

2 . On the games front, the Hangman game is qu ite straightforward. The program should contain a l ist of
words hidden by one person . The p rogram then g ives a c lue as to the number of letters in one of the
words (perhaps by printing severa l question marks l ike th is - ? ? ? ? ?) . Each letter is guessed and after
n ine attempts at guessing the letters, the program " hangs" the player. I f you 've got enough room,
you may ! i ke to try to d raw a picture of a man g radual ly hanging after each wrong guess !

3 . If you ' re into statistics, then maybe a program to calcu late the mean, variance and standard deviation
of a l ist of data points wi l l be up you r street !

4. If you a re a col lector of anyth ing (beer bottles, com ics, etc), you may l i ke to create you r own indexing
program, where the program holds deta i l s of the number of items held u nder various headings (e .g .
brewery name, or printer's name) .

1 92

'·)

)

n

0

)

Chapter 1 1

A Gl impse into Another World
Th is chapter i s not rea l ly essential for you to read, a s i t does not conta in anyth ing that wi l l further your
programming capabi l it ies. There a re two functions and one com mand that we haven 't yet covered , and
so th is chapter is intended to introduce you to them.

To be honest, at this stage of you r "career", these new faci l it ies are probably not going to be at a l l
usefu l , but so that you don't feel left out, we' re going to see what they do.

When you have ga ined confidence and wish to know more about computers in general - the ZX8 1 is
only one of many d ifferent types - then I have incl uded a l ist of further reading i n this chapter, so that
what you read now wi l l be put i nto its proper perspective.

I 'm not going to set any rea l questions in this chapter, but there are some exercises dotted along the
way to make you think about what you a re doing.

1 1 . 1 INSIDE THE ZX81

As you have seen in the I ntroduction, a l l the programs you have written so far have been written i n a
computer language ca l led Basic . A computer cannot understand Engl is h .

I n order t o let you write you r programs in Basic, someone has had to write a whole program that
converts your Basic commands into the sort of com mands that the ZX81 can understand . This p rogram
is called the " Basic I nterpreter" , and I ' m not going to define it any more than that. I t is held in the R O M
memory ins ide t h e ZX8 1 .

A computer has its own memory - used to hold your programs and variables - and this memory has a
l im it. It is broken lJP i nto t iny sections that can hold numbers , each of which can be between 0 and 255 .
Not a very large number. Each of these t iny sections that can ho ld these smal l numbers is ca l led

a byte

The basic ZX81 is suppl ied with 1 024 of these bytes (this corresponds to the 1 K RAM that you m et in
the I ntroduction) and if you buy the memory expansion pack, you ' l l have 1 6384 of them (hence, the 1 6K
RAM pack, s ince 1 024* 1 6= 1 6384) .

You can store numeric va lues in these "bytes" , but you need to be carefu l , as the ZX81 is a l ready
us ing a lot of them to hold you r Basic p rogram and variables, i n . I f you know what you ' re doing (at the
moment you don 't !) you can f ind a spa re bit of space that you know the ZX81 isn 't using and use i t for
yourself.

The command to store a va lue in one of these "bytes" is

POKE (on the 0 key)

You need to tel l POKE two th ings . F i rst, which "byte " it is that you want to put the va lue in and
second, the va lue that you want put into that byte. But remember that the values you store can only be
between 0 and 255. Let's try a smal l example .

Type th is com mand :

POKE 1 6507, 1 00

The va lue 1 6507 is the number of the particu lar byte we are addressing, whi l e the va lue 1 00 is the
va lue we want to store in this byte.

As an aside, a lthough the bas ic ZX81 on ly has 1 024 (or 1 K) bytes, the "address" of the fi rst one is not
number 1 . I t is 1 6384. So the range ·on a basic ZX8 1 is from 1 6384 to 1 6384 + 1 024 (equals 1 7408) .

That command above has the effect of "Take the number 1 00 and store it in the byte· a t memory
add ress nu mber 1 6507" .

It may be useful to store n u mbers somewhere, but u n less we can get them out again it seems a bit

1 95

Chapter 1 1

pointless. We can take the va lue back out by using

PEEK (u nder the 0 key)

The numeric expression that fol lows this function is the address of the byte we wish to examine - in
our case, 1 6507.

Since it's a numeric function (no $ symbol) we can assign its va lue to a variable or even p rint it .
Try this :

PRINT PEEK 1 6507

Have you got 1 00 aga in? This shows that the 1 00 you put into 1 6507 with POKE can be taken out
again with PEEK.

Try to think of these bytes as a massive array where the f i rst element is not nu mber 1 but number
1 6384. It 's sort of l i ke writi ng :

D IM ZX8 1 (1 024)

except that this is not a va l id command (so don't bother typing it in !) . It might help you to pictu re what
we' re ta lk ing about .

Exercises
Try these :

(i) POKE 1 6437, 1 00
PRINT PEEK 1 6437

This tel l s you that you must · know where you ' re POKEing things, otherwise they' l l change
unexpectedly !

(i i) What wou ld you expect POKE 1 6507, 300 to do? Try it and see if you ' re right.

(i i i) POKE 1 6397 , 1

This tel l s you that POKEing things without due ca re and attention can cause the ZX81 to pack up !
Switch i f off and on aga in .

1 1 .2 MACHINE CODE PROGRAMMING

So how can these two items be used ? The answer is f i rstly that you m ust know what you ' re doing and
at th is stage you don't , and secondly that they a re main ly used to a l low people to enter prog ra ms that
have been written in not Basic , but something ca l led " Machine Code" .

Since th is is beyond the scope of this cou rse, I can on ly refer you to the l ist of further reading. I f you
become interested i n this type of work, then these books wi l l help you to understand how machine code
works and how you can write you r own .

There is one more function that hasn't been covered . S ince POKE is a way of getti ng a machine code
program into the ZX8 1 , how can it be run? The RUN command a lways runs Basic programs .

The answer is to use the function :

USR (under the L key)

The expression that fol lows is the address of the fi rst byte conta in ing the machine code progra m .
So you cou ld write something in machine code (i nstead of Basic) , then POKE i t into some parts of

memory that aren't being used and run it by stating :

LET X= USR (address of f i rst byte)

1 96

)

)

)

)

Chapter 1 1

You are forced to write " LET X = " since USR is a function and cannot stand alone in a statement l i ke a
command.

1 1 .3 TH E ZX81 SYSTEM VARIABLES

One other main use of the PEEK and POKE is that of a ltering the ZX81 system variables in some way.
These variables· a re used by the ZX81 to help it look after your Basic prog rams. Some of them conta in

information which a program can make use of - one example of th is is the prog ram "TRACE" that we
studied in Chapter 1 0 . These variables do not have names in the way that you a re accustomed to - they
are held i n bytes i n memory. The only way to get at them is to PEEK them.

Chapter 28 of the ZX8 1 Handbook g ives an excel lent description of these variables, what they conta in
and how you m ig ht use them. I t a lso tel ls you whether it is safe to POKE anything into them .

In the program "TRACE" , address 1 6389 was looked at to see how much memory the ZX81 conta ins .
If this nu mber is g reater than 70 , then the 1 6K RAM pack must be attached.

For now, we wi l l not get too involved in how these can be used, as a deeper understanding of the way
a computer works is needed to gain fu l l benefit from a l l th is .

Summary
This chapter has probably left you hanging in the a i r a l ittle, but for now, that's the way that it has to be.
To take you i nto the inner rea lms of the ZX8 1 wou ld requ i re a book larger than th i s ! Al l this has
attempted to do is g ive you some idea how these part icular commands and functions a re used.

I f you wish to become more involved in the way the ZX8 1 (or, more particula rly, the Z80
microprocessor) works, then you wi l l need to become fami l iar with the fol lowing topics :

1 . How a m icrocom puter works (at a h igh leve l) . This is dealt with in a very readable man ner in the
books :

I ntroduction to Microcomputers Volumes 0 and 1 (Adam Osbourne, Osbou rne Associates)
These books show you how the va rious "bui ld ing blocks" of computer systems fit together . They
also show you how a typical microcomputer is programmed at machine code leve l .

You may f ind portions o f these books rather technica l , a n d i f you have n o previous knowledge of
e lectronics or its terminology, you should study the beg inners' articles conta ined in the monthly
computer magazines before tackl ing them.

You should be ab le to use b inary numbers (addition and subtraction), and a l so understand what is
meant (even if you can 't use it !) by Boolean logic .

2 . The instruction set of the Z80 m icrocom puter. This can be fou nd in :
Z80 Assembly Language Prog ramming (Lance Leventhal , Osbourne Associates)

which wi l l show you how each of the machine code instructions works, and how it can be used
with in larger machine code prog rams. It is not necessa ry to read the books mentioned above fi rst,
but you may f ind a few references in th is book to genera l topics covered in those above.

Next we' l l round off the course with some h i nts and tips, p lus a few problems to keep you going .
Meanwh ile, these a re the various points covered in this chapter :

- that a l l you r programs so far have been written in a language cal led BAS IC .

- how the memory o f the ZX8 1 i s d ivided up into bytes, and how each of these bytes is add ressed by
a un ique nu mber which can be used in the PEEK and POKE keywords .

- that you may f i nd extra h idden depths in your ZX81 by learn ing about " machine code
programming" .

There a re no further exercises for th is chapter.

1 97

: ')

0

()

0

)

)

Chapter 1 2

And Fina l ly . . .
Wel l , here you a re at the end of this course. Before you embark on a l ifetime of programming , there a re
a few final h i nts and tips that I would l i ke to pass on to you . I have del iberately left them unt i l the end i n
order t o make l ife s imple for you t o start your fi rst programs . Let me g ive you some h ints . I ' l l go through
them i n the same order as the Chapters.

Chapter 2
I n this chapter you were i ntroduced to the REM com mand. Th is is an important command . It helps you
to remember what a progra m does and so I cannot stress enough how much better your programs wi l l
be (not on ly for yourself) if you use p lenty of REM statements in any program you write. Try to put REMs
at the start of the program (te l l i ng what it is) , at the start of each subroutine (so that you can see what i t
does) , and before any l i nes in a program that a re particu larly i mportant or compl icated .

This leads to a d i lemma on the basic ZX81 s ince REM statements eat into you r ava i lab le p rogram
memory space. If a program is large, then obviously the REM statements should be the fi rst items to g o
- but st i l l try t o write you r programs with REM in mind .

I f you a l ready have a 1 6K RAM pack then it's h igh ly un l i kely that you ' l l run out of program space -
keep putting those lovely REMs i n !

Chapter 3
Throughout the course I have consistently told you that the value of "true" is 1 . This is not strictly
correct - when testing for "true" in a condition (or IF statement), "true" is actua l ly taken to be anyth ing
other than 0 , so that a statement such as IF 33.5 THEN PRINT "TRU E " wi l l work as seen . T ry i t !

A cond it ional expression, such as LET C= (H>5) , wi l l , however, on ly g ive a va lue of 0 if false, or 1 i f
true.

The fol lowing h ints cover several chapters, but I 've l umped them together under Chapter 3 s ince they
al l revolve a round the use of GOTO .

This command can get you r p rograms into qu ite a bit of trouble if you ' re not careful with it .
Avoid (l ike the plague) these cond ition s :

N EVER USE GOTO :

(a) to jump into a FOR loop. I f the FOR command isn 't actua l ly executed you might get some strange
th ings happening . I t is possible that you ' l l get an error, but under certain condit ions you wi l l not -
so watch out !

(b) to leave a subrout ine . ALWAYS use RETURN. then sort out what you want to do after you 've
come back from the subrout ine. This especia l ly appl ies if you have nested your subroutines, s ince
the next RETURN wou ld be treated as if it were from the last GOSUB, and the program wou ld
end up in a horrible mess.

(c) to jump into a subrout ine . The same ru les apply. S ince the ZX81 keeps a track of each GOSUB, if
you suddenly jump into a subroutine, the ZX81 wi l l f ind an extra RETURN. Where wi l l it go to?
Who knows . . . So ta ke my advice and don't do i t .

Chapter 4
Th is chapter showed you how to use FOR loops and also how they can be nested . A common fault i n
p rograms crops up when nested FOR loops overlap each other - l i ke so:

correct

FOR Y= 1 TO 1 0
FOR X= 1 TO 32
PRINT X ;
NEXT X
NEXT Y

incorrect

FOR Y= 1 TO 1 0
FOR X= 1 TO 32
PRINT X ;
NEXT Y
NEXT X

Can you see why? If you work them through i n the way we did in Chapter 4, i t ' l l stand out a mi le .

201

Chapter 1 2

Chapter 7
Subrouti nes - use lots of them ! They rea l ly he lp to make your programs more manageable. Look to see
how other people write programs and how they've worked subroutines i nto the program structure.

General Comments
Using meaningful variable names can make p rograms eas ier to decipher - once again the basic ZX81
can qu ickly run out of program space ; just l i ke REM, this is one a rea that needs to be carefu l ly traded off.

There a re several p laces that you may find further writings on the ZX81 . You can join one of the ZX81
User Groups (see the monthly magazines for deta i ls - there a re often articles written about the ZX81
which wi l l g ive you an address) . Alternative ly, many book shops and mai l order book compan ies now
stock books written specifical ly for the ZX8 1 .

202

)

)

)

)

)

Appendix A

BASIC com pa risons
This a ppendix sets out t o h igh l ight some o f the features found i n other versions o f BAS IC , a n d how they
may be coded to work on the ZX8 1 .

In the world of microcomputer systems, M icrosoft BAS I C tends to be the most popular version
avai lable, and most comparisons made of any versions of BAS IC tend to be made against the M icrosoft
versio n . This does not necessari ly mean that the Microsoft BAS IC is the "best" , but merely that it is the
most widely-used and therefore the version you a re most l i kely to come into contact with on another
system .

The various featu res a re each noted, with a brief explanation as to its use, then a poss ible way of
progra mming the featu re on the ZX8 1 .

DEF FN

DATA

READ

RESTORE

TRON/TROFF
(or TRACE)

LET

this feature a l lows you to DEFine you r own FunctioNs with in BAS IC , being made
up of a combination of any numeric or string expressions (the combination m ust
be syntactica l ly correct !) . A s ing le letter usual ly fol lows the FN to identify the n ew
function name. A pa rameter norma l ly fol lows the defin it ion i n brackets, a l lowing
the function a rgu ment to be entered into the defin ition . Wherever FNx is then
used throughout the program, the new function is invoked . This can be written on
the ZX8 1 by expanding al l FNx statements back into their original form . E .g . :

1 0 DEF FNR (X) = INT(RND*X) + 1
20 LET A = FNR(1 00)

. . . can be written on the ZX8 1 as :
20 LET A=INT(RND* 1 00) + 1

a l lows numeric and string valued expressions to be stored with in a p rogram, e . g . :
1 0 DATA 2 1 , "FREDD IE" ,2 .5E03

The data can be assigned to variables us ing the READ command .

takes the next data item from the DATA statem ent(s) and assigns it to the
specified variable, e .g . :

1 0 DATA 2 1 , "FREDD I E" ,2 . 5E03
20 READ N U M 1 (takes 2 1)
30 READ N$ (takes "FREDD I E")
40 READ NUM2 (takes 2 .5 E03)

DATA and READ can be combined on the ZX81 by using LET statements to
assign the variables d i rectly. Although th is is not as conven ient as DATA & READ,
it works j ust as wel l i n practice.

resets the DATA queue back to the beg inn ing , so that the next item to be READ
wi l l be the f irst DATA item again . Th is would be done on the ZX8 1 by resetti ng the
variables to be assigned once more .

a l lows t h e l i n e numbers o f a running prog ra m t o b e displayed o n t h e screen a s
each l ine i s obeyed. This is extremely usefu l for debugging programs a n d h a s n o
equ iva lent o n the ZX81 .

th is can normal ly be om itted in most other versions of BAS IC, so that :
1 0 LET X=23
20 LET Y=X*255

. . . could be written as . . .
1 0 X = 23
20 Y = X*255

You must a lways use LET on the ZX8 1 .

203

Appendix A

ON x GOTO . . . th is statement is found in many other versions of BAS IC , a l lowing a program to
transfer control to several d ifferent l i ne numbers depending on the value of a
s ing le variable :

1 00 ON N 1 GOTO 200,300,400
This wi l l cause BAS IC to go to l ine 200 if variable N 1 has the value 1 , l ine 300 if
N 1 =2 , l ine 400 if N 1 =3 . You can very easi ly rewrite th is on the ZX81 by using a
condit ional GOTO, e.g . :

1 00 GOTO 1 00 + (N 1 * 1 00)
Where l ine numbers become more complex, you may need to write this as a
series of IF statements :

1 00 ON N2 GOTO 27,33, 1 4
. . . would become . . .

1 00 IF N2= 1 THEN GOTO 27
1 01 IF N2=2 THEN GOTO 33
1 02 IF N2=3 THEN GOTO 1 4

. . . o r a lternatively . . .
1 00 GOTO (N2 = 1) *27 + (N2=2)*33+(N2=3)* 1 4

ON x GOSUB . . . th is can be treated i n a s imi la r fashion, except that you should use GOSUB instead
of GOTO throughout.

WHILE x
WEND

FRE(O)

INPUT$(n)

LEFT$(s ,n)

204

a l lows a p rogram to obey a l l i nstructions in between the WHILE and WEND
statements whi le condition x is true, e .g .

20 WHILE X>0
30 PRINT X
40 X=X- 1
50 WEND

This can be written on the ZX81 by specifying the reverse of condit ion x with in a
FOR statement, and us ing a GOTO to replace the WEND:

20 IF NOT X>0 THEN GOTO 60
30 PRINT X
40 LET X=X- 1
50 GOTO 20
60 . . .

th is i s a nu meric function which g ives the amount of avai lable m emory at the t ime
of us ing the function .

is a string function which asks for n characters to be input f rom the keyboa rd .
Once n characters have been accepted, the program contin ues with no need to
press newl ine . You wi l l need to write this using the INPUT command, or a loop
conta in ing the INKEV$ function, e .g . :

5 LET X$= " "
1 0 FOR X = 1 TO N
20 LET C$=1NKEV$
30 IF C$= " " THEN GOTO 20
40 LET X$=X$+C$
50 IF INKEY$<> " " THEN GOTO 50
60 NEXT X

a string function which suppl ies the leftmost n characters from string expression
s . You can easi ly write this as :

200 LET X$= S$(TO n)

)

)

)

MID$(s ,n ,m)

RIGHT$(s, n)

String handling

Appendix A

also a string fu nction which g ives a mu lti-character s l ice from string expression s .
The function takes m characters start ing from character n . Th is can be written as :

200 LET X$= S$(n TO n + m - 1)

s imi lar to LEFT$, th is string function suppl ies n rightmost characters from string
expression s . Can be written on the ZX81 as :

200 LET X$= S$(LEN S$- n TO)

You have a l ready seen above that M icrosoft BASIC a l lows the use of the LEFT$ MID$ and RIGHT$
functions to obta in string s l ices. The ZX8 1 is part icularly unconventional in the way strings a re
manipu lated s ince it uses the qua l if ier (n TO m) to obta in a string s l ice.

Some BAS I Cs do not a l low str ing a rrays at a l l , whi le others adopt a s imi lar method to that of the ZX8 1 ,
a lthough a l l strings must be d imensioned - even if they are not arrays . String s l ices a re then used by the
qua l if ier (n ,m) i nstead of (n TO m). For example :

1 0 DIM S$ (1 0)
20 LET S$ (2,5) = "ABCDE"

Th is sets the second to fifth characters of string variable S$ to the expression "ABCDE " .

File handling
Most BAS I Cs a l low the use of floppy disk or cassette tape storage. When these fac i l it ies a re avai lable,
there are usua l ly three or four com mands that a l low manipu lation of the records :

OPEN
which a l lows you to access records under a name of your own choice (ca l led a
file name)

READ or INPUT #n or GET
which a l lows a data record to be transferred from the disk or tape into the
computer

WRITE or PRINT #n or PUT
which a l lows a data record to be transferred from the com puter onto tape or
d isk .

CLOSE
which shuts the "fi le" from further access.

It would be inappropriate to go into further detai l at this stage as most computer systems have s l ig htly
d ifferent methods for stor ing and retrieving data records .

PEEK and POKE
These two featu res a re com monly fou nd on other computer systems, but programs us ing them a re
normal ly not able to run on a system of a d ifferent type.

Beware of trying to convert a prog ram us ing these features to ru n on your ZX8 1 (and vice versa)
without fi rst understanding what effect they are having upon the progra m .

Multiple statements
Most vers ions of BASIC a l low you to write more than one statement on the same l i ne . Each statement
is then separated usua l ly by a colon, thus :

1 0 FOR X= 1 TO 20 : PRINT X : NEXT X

If you a re converting a program which uses mu lt ip le statements, you wi l l need to expand these i nto
ind ividual l i nes once more . Be careful of the l ine nu mbers that you use !

1 0 FOR X= 1 TO 20
1 1 PRINT X
1 2 NEXT X

205

Appendix A

These mu lt ip le statements can cause some confusion when an IF statement is used :

250 IF X>0 THEN LET Y=5 : PRINT "H E LLO" : GOTO 270
260 . . .

I f the condit ion is true, then all the fol lowing statements are obeyed, whi le if the condition is false,
none of the statements a re obeyed. On the ZX8 1 , this would be written as :

206

250 IF NOT X>0 THEN GOTO 260
251 LET Y=5
252 PRINT " H ELLO"
253 GOTO 270
260 . . .

)

Appendix B

Com m o n Problems a nd Solutions
This section wi l l hopeful ly sort out any troubles you might have whi le you ' re getting going . A quick i ndex
is g iven below so that you can try to identify you r problem

cassette tape load ing
cassette tape saving
errors that don't go away
error report 4 (no more room)

B. 1 Cassette tape loading

B . 1
B .2
B .3
B .4

I n itia l ly, th is can be qu ite a problem but once you have got your ZX8 1 and tape recorde r talking to each
other, you r problems wil l be un l i kely to recu r.

Here a re a few th ings to check :

1 . Make sure that the leads a re p lugged i nto the correct sockets . This is qu ite an easy m istake to ma ke.
The sockets a re marked on the ZX8 1 to show you where each end of the leads should go to.

2 . Are you using jack sockets (3 .5mm) o r have you bought an adaptor to p lug into a DIN socket? If
you ' re runn ing from a D I N socket, then that's the reason why you ' re having trouble. DIN sockets do
not give enough s ignal strength for the ZX8 1 . Try using the jack sockets (if you r recorder has them)
or the loudspeaker extension socket instead of the earphone socket. Whatever you do, though, do
NOT connect the ZX81 up to the speaker output from a h i-fi ampl if ier .

3 . Can you "see" the p rograms on the TV screen as the ZX81 tr ies to load them in from the tape, or
does the screen just stay the same a l l the t ime? I f you can't see any change in the screen, then either
the leads a re fa u lty (unscrew them to check) or the tape itself is b lank, or the output socket from your
recorder is not work ing . Try l isten ing through an earphone to find out if you can hear the
"super-charged bumblebee" sou nd. If , however, the screen does change as it goes past a prog ram
on tape, then it p robably means that your cassette recorder heads a re out of a l ign ment. Take the u n it
to a reputable dealer for checki ng.

4. Have you tr ied to load programs at various volume sett ings? Sometimes it helps - once you 've
establ ished a sett ing that works, mark it and keep to it.

Chapter 1 6 of the Sinc la i r Handbook g ives more information.

B.2 Saving programs on cassette
F i rst of a l l , what makes you th ink that saving prog rams (as opposed to load ing) is g iv ing you a

problem ? Can you hear anyth ing on the tape when it is played back? If you can , then read the section on
load ing problems.

I f you can't , then check that you've got the leads i n properly, and a lso unscrew them to make sure a l l
the connections a re sou nd .

Make sure you ' re plugged into a M I C socket and not the AUX input to a h i-fi cassette.

B.3 Errors that won't go away
This p roblem com es in many d isgu ises. If you ' re having troubles when edit ing a p rogram (noth ing
happens when you p ress ED IT) then you ' re up against " E rror 4 - not enough memory" . See the n ext
section .
Have you looked at the section on E rror Report Codes to see what exactly any report code is? If you
can 't see what's wrong with a particu lar l ine of progra m yet sti l l the ZX8 1 th rows it out, try to write it
differently - it may take two or three l i nes instead of one , but at least it' l l work .

If you r problem is a syntax error and you can 't see why, then the same appl ies . R U BO UT the l ine and
try a d ifferent method.

A common cause of errors is forgett ing that many words have a s ingle key and trying to type the word
out in fu l l . This ca uses a syntax error - but the l ine looks OK.

B.4 Error Report 4 - Not enough memory
This most often occurs when you ' re tryi ng to edit a program - a l l of a sudden noth ing happens when you
press EDIT. There a re severa l ways of getting round th is , but f irst a word in you r ear .

207

Appendix B

Whenever you see the bottom of the screen starting to rise up when you ' re entering a new program ,
you should rea l i se that you ' re running out of room. Save the program o n tape a t this point, a s it's start ing
to becom e an awful amount of typing to have to put back in aga in .

The only way to get a l ine for edit ing is to f i nd a way of making space on the screen for the l i ne to be
put at the bottom . You can do this in several ways . The easiest two methods (I f ind) a re :

1 . F irst press NEWLINE s o that the ZX81 does not have any rubbish a round that you can't see. Then
type CLEAR (obviously, you can't use th is m ethod if you want to save some variables - try CLS) .
This g ives you a nice b lank screen with just 0/0 at the bottom . Now type EDIT. The l ine pointed to by
the cu rsor wi l l now appear (on its own) at the foot of the screen . You can edit it and put it back again
qu ite happi ly.

2 . Once again , p ress NEWLINE to clear out any rubbish . Then type LIST nnnn (where nnnn is the l ine
numbe r you ' re trying to edit) . You ' l l get some sort of report code at the foot of the screen . Now type
EDIT. The l ine wi l l now appear for you to edit as norma l .

Whenever a program gets into th is condit ion, you ' re probably beginn ing to overstep the memory
l im its of your ZX8 1 . If you haven't got a 1 6K RAM expansion pack, then now is the t ime to consider
getting hold of one. I f you have got one, then it m ust be an enormous program you ' re writing ! Perhaps
it's reached the point where you should sit down to see if you 've written it in the most efficient manner .

I f methods 1 and 2 fa i l , it means you haven't even got enough room for a s ing le command to be
obeyed - in which case, I 'm sorry to have to say that the program is just too big . Maybe it could be
written in a d ifferent way.

208

)

)

)

Appendix C

1 BASIC Com mand Sum mary

)

)

Each paragraph identif ies a Basic command or fu nction . Examples of use are given, and a lso any usefu l
"tricks" associated with it . The l i st is in a lphabetic sequence.

Some of the i nformation g iven in th is section has not been covered with in the main body of the
cou rse (e . g . making use of POKE and PEEK), but is intended as a sou rce of reference.

The paragraph headings show:

- Command/function name
- Command type
- Fu l l syntax, if not obvioius

Throughout th is section, the fol lowing abbreviations a re used :

ABS
Numeric function
Syntax : ABS n

n numeri c expression
m numeric expression (to avoid clashes)
s string express ion
v va riable name
<S> statement
e
[l

expression (nu meric or string)
indicates an optiona l item

The ABS n function returns the absol ute va lue of numeric expression n. The result is always positive .
The main use of this function is to check nu meric values regardless of s ign .

Examples:
(a)

(b)

1 00 INPUT 0
1 1 0 IF ABS 0< 1 0 THEN GOTO 200
1 20 PRINT " E R R O R - OUT OF RAN GE"
1 30 PRINT " M UST B E - 1 0<0< 1 0"
1 40

500 LET S=A(ABS X)

this example ensures that the reference to a rray A does not go negative .

ARCCOS
Numeric function
Syntax : ACS n

Suppl ies a rccos va lue of the a rgument, which must be i n rad ians .

Example :

ARCS IN
Numeric function
Syntax : ASN n

1 00 LET 8 1 =ACS 0

Returns the a rcs in va lue of the a rgu ment i n radians.

Example :
250 PRINT ASN (SOR X2)

209

Appendix C

ARCTAN
Numeric function
Syntax : ATN n

Suppl ies the a rctan va lue of the a rgument in rad ians.

Example :

CHR$
String function
Syntax: CHR$ n

360 IF ATN E>0.56 THEN GOTO 200

The CHR$ n fu nction provides the character representation of the numeric argument. This is norma l ly
used when pr int ing items that have been converted (using CODE function for example) for
manipu lation . I t is q u ite norma l to find routi nes that convert data stri ngs into numeric quantities to a l low
easier programming (it can a lso save a lot of program space at t imes !) .

E rror B wi l l resu lt i f the argument i s outside the range 0<= n<256.

Examples :
(a) 1 00 IF CHR$ G = "Y" THEN GOTO 370

(b) This example prints random letters of the a lphabet.

CLEAR
Command

1 00 FOR X=;= 1 TO 1 00
1 1 0 PRINT CHR$ (INT (RND*26) +38) ;
1 20 NEXT X

Resets a l l variables i n a progra m . This is automatica l ly done when " R U N " is given , but is a "qu ick" way
of resett ing a l l variables when they are no longer requ i red. On a 1 K RAM ZX8 1 , unused variables (i .e .
those that have been assigned but a re no longer requ i red) can take up a noticeable proportion of the
space ava i lable; thus jud icious use of the CLEAR command can keep these to a m in imum.

Example :

CLS
Com mand

560 PRINT "ANOTH E R GAM E?"
570 INPUT Y$
580 IF Y$= " NO" THEN STOP
590 IF Y$= "YES" THEN GOTO 620
600 PRINT "AN SWE R YES OR NO"
6 1 0 GOTO 560
620 CLEAR
630 GOTO 1 00

Clears th'e screen d isp lay a rea and resets the print position to the top left-hand corner of the screen (l i ne
0 column 0) .

Un less you r prog rams "scro l l " during program execution, you need to monitor closely the nu mber of
l i nes that have been d isp layed and ensure that this does not exceed 22, otherwise an error condition
occurs (screen fu l l) . A program wil l usua l ly conta in some error checking of data input, and d isplay a

2 1 0

Append ix C

message if the check fai ls. This can lead to screen overflow if care is not taken to ensure that the CLS
statement is used d u ring the loop back to accept more input.

Example :
20 PRINT " E NTER A N U M B E R BETWEEN 1 AND 1 0"
30 INPUT N
40 CLS
50 IF N>0 AND N < 1 1 "(HEN GOTO 200
60 PRINT "TRY R EADING TH IS T I M E . . . "
70 GOTO 20

200

I f the CLS statement were omitted here, the screen would overflow after 1 1 attempts to get a correct
number i n !

CODE
Numeric function
Syntax : CODE s

This function returns the numeric code value of the fi rst character i n the string a rgument. Usefu l for
test ing keyboard input and breaking strings into ind ividual characters.

Code 0 is set up as the end of string marker so that CODE s appl ied to a nu l l string retu rns the value 0 .

Examples :
(a) 1 0 INPUT Y$

1 5 REM J U M P I F F I RST LETTER IS"Y"
20 IF CODE Y$=62 THEN GOTO 1 00
30 REM ANYTH I N G ELSE COM ES H E R E . . .
40

Better sti l l , l i ne 20 could say:

20 IF CHA$ CODE Y$= "Y" THEN GOTO 1 00

This avoids a problem whereby error 3 is g iven if an out-of-range s l icer is specified, e .g .

20 IF Y$(1) = "Y" THEN GOTO 1 00

could result i n e rror 3 if an empty stri ng was entered as Y$.

(b) split a word into letters in a n umeric a rray

CONT
Com mand

1 0 DIM W(20)
20 INPUT W$
30 IF LEN W$= 0 THEN GOTO 9999
40 FOR X= 1 TO LEN W$
50 LET W(X) = CODE W$(X)
60 NEXT X

9999 STOP

Al lows execution of a program to resume after a break. The break cou ld have occurred for a variety of
reasons - pressi ng the BREAK key, a STOP command encountered, or after correct ing a l i ne that has
given a n error report code. Execution resumes at the next l ine number un less the program was stopped
during an INPUT command.

2 1 1

Appendix C

COPY
Command

This com mand a l lows the contents of the d isplay f i le (or a copy of the current screen) to be sent to the
printer.

An extremely usefu l command for both program debugging and for taking copies of displayed resu lts .
Although the com mand would norma l ly be used in immed iate mode, there is no restriction on its use

with in a prog ram .
S ince the p lotting fac i l it ies cannot b e used within PRINT and LPRINT commands. the only way of

obta ining a p lotted g raph on the ZX printer is by using the COPY com mand after plotting on the screen.

Example :
This program wi l l pr int the g raph of a s ine wave :

cos
Numeric function
Syntax : COS n

H?J FOR X=0 TO 63
20 PLOT X.20
30 NEXT X
40 FOR Y=0 TO 43
50 PLOT 0,Y
60 NEXT Y
70 FOR X=0 TO 63
80 PLOT X,SIN (X/5)* 1 5+20
90 NEXT X

1 00 COPY

G ives the cosine value of the argument in radians.

Example :
20 LET C = COS X

DIM
Command
Syntax : DIM v[$] (n [,m])

Defines the max imum s ize of an a rray v to be n items at the lowest d imension.
Array e lements start at element nu mber 1 and go through to n .
The variable v may be either a s ing le character numeric variable name, or a s ing le character string

variable name (fo l lowed by $) .
String variab les become fixed length over the length of the lowest a rray subscript - e .g . DIM S$(5 , 1 2)

wi l l a l locate a string a rray S$ of five strings, each with a fixed length of 1 2 characters.
Whenever the DIM statement is executed, al l e lements of a numeric a rray a re set to zero. whi le those

of a string array a re set to spaces.
Elements of the a rray a re addressed by subscripting the a rray name with a n u meric expression

equ ivalent to the e lement number. For example, A(5) wi l l g ive the value of the fifth element with in a rray
A.

Examples :
(a)

(b)

1 0 REM D E F I N E AN AR RAY OF 5 ITEMS
20 DIM 0(5)

20 DIM X(9,4}
30 FOR X= 1 TO 4
40 LET X(2,X) =X
50 NEXT X

This last exam ple shows that numeric a rray names a re d istinct from ord ina ry individual variables (but
note that the same is not true for string names and string a rrays) .

2 1 2

)

)

)

\
I

Appendix C

<Expression>
An expression is a combination of constants, variables and logical or a rithmetical operators. Two types
of expressions exist - numerical and string .

The order of priority in evaluating any logica l or arith metical operators is (from h ighest [i .e . most
binding] to lowest) :

1 2 ()
1 1 any function
1 0 * *

9 - n
8 *
7 I
6 +
5 = <> < > > = < =
4 NOT
3 AND
2 OR

bracketed expressions

exponentiation
unary minus
mu ltipl ication
d ivision
addition and subtraction
equality and i nequa l ity
inversion
logical
logical

The only operators relevant to string expressions are :

= . <. >. + . > = . < =

where equa l i ty/inequal ity tests are made us ing the character equ iva lents a s l isted i n the ZX8 1
Handbook.

Concatenation of strings can be undertaken using the + operator.
The equal ity and inequal ity tests result in a va lue of 1 if the test result is "true" and 0 (zero) if the test

result is "fa lse" .
The NOT operator has the effect of inverting the va lue of the fol lowing expression, so that NOT 1

becomes 0, wh i le NOT 0 becomes 1 .
Log ica l operators a re effective only for numeric expressions. AND requ i res that both expressions be

true for the whole expression to be true, whi le OR requ i res that only one of the two expressions be true
for the whole expression to be true. A complete d iscussion of arithmetic and logical operators can be
found as fol lows :

Arithmetic operators
Condit ional operators
Log ica_I operators

Numeric expressions
These can be represented by:

- a n umeric quantity
- a n umeric variable

Chapter 1 section 1 . 1 (1 . 1 /3)
Chapter 3 section 3 .2 (3 .212)
Chapter 3 section 3 .2 (3 .213)

- the a rith metic resu lt of any combination of the above
- the logica l resu lt of any combinat ion of the above

Examples :
(a)
(b)
(c)
(d)
(e)

5
A(3)
((0*3)+ \R/7))
(X= 1 AND Y=5)
T$ ="0U IT" s ince the equa l ity test resu lts in a va lue of 0 or 1 .

2 1 3

Appendix C

String expressions
These can be represented by :

- a string of text enclosed in q uotes
- a string variable
- any concatenated combination of the above
- any of the above q ua l ified by a slicer

Examples :
{a)
{b)
{c)
(d)

"JOE FELL OVE R "
0$
0$+"JOE F E LL OVER "
0$(3)
0$(2 TO 3)
0${TO 3)
0$(2 TO)
0$+ "J O E F E LL OVE R"(5 TO 1 0)
(0$ + "JOE FELL OVE R") {5 TO 1 0)

Study these last exam ples carefu l ly . They can be extremely powerful and usefu l .

EXP
Numeric function
Syntax : EXP n

Suppl ies the val ue of the constant e ra ised to the power of the a rgument, i .e . ex. Th is is effectively the
natural anti-log of a number.

Example :
60 PRINT EXP S

The anti-log of a va lue log 1 0 can be obta ined by specifying :

FAST
Command

PRINT 1 0* *V

Puts the ZX81 i nto fast mode, where the screen display is not refreshed during computat io n .
The screen is d isplayed under t h e fol lowing conditions :

{ a) when an INPUT statement i s encountered
{b) when a PAUSE statement is encountered
{c) when an error report code is generated
{d) when a STOP com mand is encountered in the program or the BREAK key is pressed d u ri ng

program execution . a lthough these amount to the same as (c) s ince report D wi l l be given .

Fast mode is four t imes faster than s low mode and should be used fo r program entry and editing , or
for programs which do not requ i re the constant display of results .

FOR
Command
Syntax : FOR v=n TO m [STEP n)

I n itiates the control variable of a block loop.

v may be any single character numeric control variable
n and m a re any numeric expressions

2 1 4

\
)

)

,.,)

Appendix C

A FOR loop is not executed if the "fi n ish" va lue is exceeded on entry to the loop. Fu l l deta i ls of these
conditions can be found in Section 4 .2 " I terat ion (2)"

The STEP va lue is optional , and if om itted, a value of + 1 is assumed. The STEP va lue is added at each
encou nter with a corresponding NEXT statement.

FOR loops can be nested to any depth (although only 26 s ing le character variable names exist to a l low
nesting !) .

Examples :
(a)

(b)

50 REM PRINT TH E LETTERS A TO Z
60 FOR X=38 TO 63
70 PRINT CHR$ X ;
80 NEXT X

1 00 REM*S H U FFLE A PACK OF CARDS
1 1 0 DIM C(52)
1 60 FOR X= 1 TO 52
1 70 LET Y= INT (RND*52) + 1
1 80 REM* F I RST CARD SKI PS OVE R TESTS
1 90 IF X= 1 THEN GOTO 300
200 FOR W = 1 TO X - 1
2 1 0 REM* CHECK ALL PREVI OUS CAR DS
220 REM*TO S E E I F TH I S O N E IS
230 REM*ALR EADY IN USE .
240 IF Y= C(W) THEN GOTO 1 70
250 NEXT W
300 REM*CARD HAS NOT BEEN SELECTED
3 1 0 REM* B EFORE, SO ENTER IT I NTO
320 REM*TH E AR RAY.
330 LET C(X) =Y
340 NEXT X

2 1 5

Appendix C

GOSUB
Com mand
Syntax: GOSUB n

Causes processing to continue at the l i ne specified by the a rgu ment of the statement. The l ine number
of the statement fol lowing the GOSUB is retained and upon executing a RETURN, control resumes
with this statement.

GOSUBs a re the l ifeblood of modular programming, and also a useful way of keeping you r prog ram
sizes to a m in imum. Any dupl icate l i nes of program can normal ly be grouped together and referenced by
a GOSUB command.

Since the argu ment of the statement can be any variable, conditional GOSUBs can be written (found
in other BAS ICs as ON x GOSUB n ,m . . .) .

I f the l i ne number specified in the a rgu ment of a GOSUB statement doesn't exist, the program jum ps
to a subroutine at the next h ighest l i ne nu mber .

Examples :
(a)

(b)

2 1 6

20 REM C H EC K FOR YES/NO I N PUT
30 GOSUB 8000
40 REM*AFTERWARDS COM E BACK H E R E
5 0 REM* N OW Y O U CAN TEST VAR IABLE Y
60 IF Y THEN GOTO 270

1 00 GOSUB 8000
1 1 0 IF NOT Y THEN GOTO 90

8000 REM*ASK FOR YES OR NO I N PUT
801 0 PRINT "ANSWER YES OR NO"
8020 INPUT Y$
8025 LET Y= 1
8030 IF Y$= "YES" THEN RETURN
8035 LET Y = 0
8040 I F Y$= " NO" THEN RETURN
8050 REM*TRY AGA I N . . .
8060 GOTO 8000

1 00 IF 1<0 OR 0>2 THEN STO P
1 1 0 REM*THAT ENSU RES TH I N GS DONT GO WRONG
1 20 GOTO 1 000 + (1 * 1 0)

1 000 REM* H E R E I F 1 = 0
1 005 RETURN
1 01 0 REM* H E R E I F 1 = 1
1 0 1 5 RETURN
1 020 REM* H E R E IF 1 = 2
1 025 RETURN

)

)

)

GOTO
Command
Syntax : GOTO n

Appendix C

Transfers flow of prog ram to the l i ne number specified in the a rgument of the command. This is s i m i la r
to GOSUB, except that control is not conditional upon a RETURN (o r any other) statement.

As with GOSUB, the a rgument can be a complex variable, thus a l lowing condit ional branching (as
with the ON x GOTO statement found in other BAS I Cs) .

Examples :
(a)

(b)

250 INPUT A
260 IF A>0 AND A< 1 0 THEN GOTO 300
270 PRINT "WHAT DO YOU CALL THAT?"
280 GOTO 250
300

1 00 IF 1<0 OR 0>2 THEN STO P
1 1 0 REM*CHECK THAT ALLS O . K.
1 20 GOTO 2000 + (1 *20)

2000 REM* H E R E I F 1 =0
2020 REM * H E RE I F 1 = 1
2050 REM* H E R E I F 1 =2

note that GOTO uses the next h ig her l ine number if the one specified does not exist.

IF
Command
Syntax : IF e THEN <S>

Tests the value of the expression a nd obeys the THEN clause if the eval uation is true.
In this BASI C, "true" expressions a re indicated by + 1 and "false" expressions by 0.
The eva l uation logic reduces al l expressions to a true/fa lse condit ion, and hence a single variable can

be used i nstead of a ful l expression e .g .

I f an expression such as IF T$(2) = "Y" OR T$(2) = " N " . . . is requ i red cont inual ly throughout a
program (or even more than once is sufficient) it becomes more practical to write -

LET T = (T$ (2) = "Y" OR T$(2) = " N")
and then test the va lue of T :

IF T THEN . . .

but remember that T reflects the va lue of the expression at the t ime of assignment. This may not be the
same as if the ful l expression were written, since the variable T$ could have a ltered.

Express ions can be made up fro m : AND, OR. +. - . * . / , =, > . <. <=. >=. or <>. See
"Express ions" for more deta i l s of these.

The action a rgument can be any BASIC statement - it is not restricted to GOTOs.

Examples :
(a)

(b)

(c)

1 0 LET Y = 0
2 0 INPUT Y$
30 IF Y$ = " N O " THEN GOTO 200
40 IF Y$= "YES" THEN LET Y = 1
5 0 IF N OT Y THEN GOTO 20

200
2 1 0 IF Y THEN PRINT "YOU ANSWERED YES"

1 0 IF X =23 AND N OT 0-6<0 THEN STOP

350 IF LEN 0$ THEN IF 0$(1) = "Y" THEN STOP

Th i n k about that one !

2 1 7

Appendix C

INKEY$
String function
Syntax : INKEY$

G ives the character waiti ng at the keyboard, or the "empty string" if there is none.
An extremely usefu l function for a l lowing a program to be stopped at conven ient points . Whereas the

BREAK key stops execution of the program, INKEY$ does not need to. The cha racter read can be used
to modify prog ram operat ion .

Example :
This program teaches you to touch-type (i f you wan t !) by disp layi ng a random letter of the a lphabet and
random numbers, and wa it ing unt i l you type the same character in reply:

1 0 SCROLL
20 FOR X= 1 TO 1 0
30 LET C= INT (RND*36) +28
40 PRINT TAB X ; CHR$ C;
50 IF INKEY$<>CHR$ C THEN GOTO 50
60 NEXT X
70 GOTO 1 0

(why must the program run i n SLOW mode ?)

INPUT
Command
Syntax : INPUT v

The INPUT statement a l lows data entry during prog ram execut ion. E ither numeric or string variables
may be assigned data in the a rgument. Program execution is suspended and the screen buffer d isplayed
(in fast mode) . A cursor "prompt" ind icates that data is requ i red and if the data is a string, then the
cursor is contained in q uotes.

Any expression may be lega l ly entered as data (for example the name of another variable, or even an
arithmetic calcu lation !) , although if the input is for a string expression, the quotes su rrou nding the
prompt must be rubbed out f i rst (use EDIT to remove these) .

If STOP is entered as the fi rst character of the input data (remove the quotes from a string
expression) , then report D wi l l be given .

Examples :
(a)

(b)

20 PRINT "WHAT IS YO U R NAM E ? "
3 0 INPUT N $
4 0 IF N$= " " THEN GOTO 20
50 PRINT " O . K. " ; N$; " M I N E IS STANLEY"

2 1 0 LET N = 1 E38
220 PRINT " H OW MANY DAYS I N J U LY ? "
230 PRINT " (TYPE N I F Y O U DONT KNOW)"
240 INPUT DAYS
250 IF DAYS = N THEN GOTO 300

In this second exam ple, an answer of N is lega l , since the va riable N has been declared . This is
qu ite a useful tr ick for a l lowing m ixed numeric and textual responses.

INT
Numeric function
Syntax : INT n

Provides the integer va lue of the a rgument. The resu lt is therefore truncated, and no rou nding occurs .
The next lower integer value i s a lways g iven, so that INT performed on a negative va lue wi l l supply

the next lower va lue a lso - e .g . INT - 1 . 5 gives - 2 .
When numbers a re man ipu lated in BAS IC , tests of equa l ity can sometimes be ineffective, due to

smal l fractional components p reventing the test from being eva luated properly. This can be particu la rly

2 1 8

)

)

)

Appendix C

noticed when a variable is being used as part of a computed GOTO or GOSUB statement.
Do not assume that a variable is i nteger after a calculation involving d ivision or keyboard input - it may

not be. Use the INT function to remove the f ractional components .

Examples :
(a)

(b)

LEN
Numeric function
Syntax : LEN s

1 00 PRINT " E NT E R A WHOLE N U M B E R B ETWEEN 1 AND 1 0"
1 1 0 INPUT N
1 20 IF N < 1 OR N > 1 0 OR N<>INT N THEN GOTO 1 00

30 GOTO INT (X/20 + 1 000)
40

G ives the number of characters conta i ned in the string argu ment.
A very useful tool to a l low strings to be man ipu lated with ease. The length of an empty string is zero .

Examples :
(a) Convert a string to code equ iva lent i n array W.

1 00 REM CONVE RT S$ INTO W AR RAY.
1 1 0 IF LEN S$=0 THEN GOTO 200
1 20 FOR X = 1 TO LEN S$
1 30 LET W(X) = CODE S$(X)
1 40 NEXT X
200

(b) Check i nput data va l id ity

LET
Com mand
Syntax : LET v[$] = e

1 00 PRINT " PLEAS E E NTER YO U R F I RST NAM E"
1 1 0 INPUT N$
1 20 IF LEN N$<2 OR LEN N$>20 THEN GOTO 200
1 30 PRINT N$; " , E H ? "

200 PRINT " . . . WHAT SORT OF NAM E IS THAT?"
2 1 0 GOTO 1 00

The LET com mand a l lows variables to be assigned with expression va lues, either numeric o r strin g .
T h e expression on the right-hand s i d e o f the equals symbol is fully evaluated before t h e resu lt i s

assigned t o the variable declared o n the left-hand side o f the equals symbo l . This a l lows a variable t o b e
modified within a s ing le statement (see example b below) .

A variable cannot be used with in a n expression un less it has p reviously been assigned a va lue ,
otherwise e rror report 2 is given. Variables can be assigned in two ways :

(a) use the LET com mand with the variable declared on the left-hand side of the equals s ign

(b) use the DIM com mand to create an a rray of the appropriate name

Ru les for variable names and restrictions on the i r val ues can be found under the heading "Var iables" .

Examples :
(a)

(b)

60 LET G ROATS =52
70 LET COST= G R OATS* 1 0

1 00 LET N$= " M Y NAM E IS" + N$

This example rel ies on var iable N$ being previously assigned, since it is referred to on the
right-hand s ide of the equals symbol .

2 1 9

Appendix C

LIST
Command
Syntax : LIST [n]

The LIST com mand a l lows portions of the prog ram to be viewed on the screen . The program cursor i s
positioned at the l ine nu mber g iven in the a rgument (o r at the beg in ning i f no argument given) , and the
program is displayed on the screen with this l ine at the top.

When editing a program , LIST can be very usefu l . By typing :

LIST 20 (say)
EDIT

the appropriate l i ne is presented (in this case 20) ready for edit ing at the foot of the screen. This can save
time-consum ing repeated cu rsor movement commands.

LUST
Command
Syntax : LUST [n]
This com mand is identical to LIST except the p rogram l isting is sent to the printer instead of the d isplay.

The l isting can be stopped by p ressing the BREAK key.

LN
Numeric function
Syntax: LN n

This function suppl ies the natura l logarithm of the expression fol lowing, i .e . loge n .
Logarithms t o base 1 0 can b e easi ly obta ined from the formu la :

e .g . log 1 0 2 would be calcu lated by :

PRINT LN 2/LN 1 0

Anti-logarithms a re g iven by the EXP function (refer to th is function for detai ls of anti-logs to base 1 0) .

LOAD
Command
Syntax: LOAD s

Allows a p rogram with name s to be loaded from the cassette un i t . The ZX8 1 does not have internal
stop/start controls and so the unit m ust be control led by hand. The tape wi l l be searched unti l program s
is found .

The com mand can be stopped at any t ime by us ing the BREAK key.
The statement is normal ly used in d i rect mode, but can be part of a p rogram to a l low "cha in ing" of

programs
If s is the empty string, then the f i rst program found on tape wi l l be loaded .

Example :

LPRINT
Command

9000 PRINT " LOAD TAKE - 2 TAPE AND"
901 0 PRINT " PRESS N EWLI N E WHEN IT"
9020 PRINT " I S LOADED AND R U N N I NG "
9030 INPUT Y$
9040 LOAD "TAKE -2"

Syntax : LPRINT [e] [,e] [; e] [AT n , m] [TAB n]

220

)

�)

)

Appendix C

The LPRINT com mand is identical to the PRINT command, except that resu lts are sent to the printer
i nstead of the d isplay. Fu l l deta i ls of the syntax a re found under PRINT, but you should note the
fol lowing exception :

The AT faci l ity usua l ly specifies a l ine and column, but this feature is restricted to the column n u m ber
on ly with LPRINT, a lthough the l i ne number m ust be present. An error report may be g iven if the l ine
number is inva l id even though i t is not used, so it should be set at zero.

Examples of use of the PRINT command should be studied.

NEW
Command

This command c lea rs the current p rogram from memory, inc lud ing al l variables . I t is used in d i rect mode
(a bit self-defeating if used in a program) to remove a program ready for another.

Memory beyond the system variable RAMBOT is not affected, so this can be used to store
" resident" machine code subroutines.

Be careful not to use th is command when you 've j ust spent 30 minutes typing in a new vers ion of Star
Trek . . .

NEXT
Command
Syntax : NEXT v

Causes the contro l variable in a FOR loop to take its next va lue (incrementing the variable by the STEP
va lue) . and returns the program control back to the l ine number fol lowing the FOR statement contai n i ng
the corresponding variable defin it ion.

I f the control var iable has exceeded its terminal l imit specified in the FOR statement, the n contro l
passes to the l i ne fol lowing the NEXT.

Exa mple :
250 FOR A = 1 TO 7
260 LET D(A)= 0
270 NEXT A

Further exam ples of FOR/NEXT can be found under FOR.

PAUSE
Com mand
Syntax : PAUSE n

Al lows the screen buffer to be displayed for n frames (0<n<32768), where 50 frames per second a re
d isplayed . Program execution resumes after (n/50) seconds.

I f a ny key is pressed d uring this period, the PAUSE statement is termi nated, and the program
contin ues.

n may be set to a ny va lue with in the range 0<n<65536 otherwise error report B is given . I f the va lue
of n i s greater than 32767, the PAUSE command wi l l cause p rogram execution to be suspended unt i l a
key i s pressed (i . e . it wi l l not a utomatica l ly resume) .

A PAUSE statement should be fol lowed by the statement POKE 1 6437 ,255

Example :
1 00 REM P R I NT SQUARES U NTI L STO PPED
1 1 0 LET A = 1
1 20 SCROLL
1 30 PRINT A; " SQUAR ED= " ; A* *2
1 40 REM WAIT 5 S ECS
1 50 PAUSE 250
1 60 POKE 1 6437 ,255
1 70 LET A=A+ 1
1 80 IF INKEY$ = " " THEN GOTO 1 20
1 90 STOP

2 2 1

Appendix C

PEEK
Nu meric function
Syntax : PEEK n

PEEK a l lows the contents of the byte at memory address n to be accessed as a normal variable .
To use PEEK, it is necessary tci know the layout of system memory, and the Sinc la i r Handbook has

included chapters identifying the way that the ZX81 memory is o rganised (Chapters 27 and 28) .
PEEK on ly looks at one byte at a t ime (a standard s ingle numeric variable occupies five bytes) , a byte

conta in ing 8 bits with max imum va lue of + 1 27/- 1 28 or modu lus 256. Thus to study some of the
system variables which occupy two bytes. a routi ne to convert two adjacent bytes i nto a s ing le numeric
q uantity is requ i red. Such a routine is :

8000 REM S ET X TO ADDRESS OF
80 1 0 REM F I RST BYTE IN PAI R
8020 REM TO B E STU D I E D .
8030 REM R ES U LT I S G IVEN I N
8040 REM VARIABLE Y .
8050 LET Y= PEEK (X+ 1)*256+ PEEK x
8060 RETURN

One useful item to PEEK is location 1 6389, which will tell whether a 1 6K RAM pack is fitted :

1 0 IF PEEK 1 6389>68 THEN LET RAM PACK= TRUE

Another is location 1 6437, which a lters its va lue every 5 . 1 2 seconds (on ly i n SLOW mode !) , and can
be used to t ime events (either interna l ly to the program or externa l ly) :

Pl
Numeric va lue

1 0 LET T ICK=PEEK 1 6437
20 LET ELAPSED T I M E = 0

1 00 LET NTI CK=PEEK 1 6437
1 1 0 IF NTI C K<> T ICK THEN GOSUB 1 000
1 20 LET TI CK= NTICK

1 000 REM COME HERE EVERY 5 . 1 2 SECO N DS
1 0 1 0 LET E LAPS ED TI M E = E LAPS ED T I M E + 5. 1 2
1 020 IF ELAPSED TI M E> 1 20 THEN STOP
1 030 RETURN

G ives the value of p i to 7 decimal p laces - 3 . 1 41 5927.
No a rgu ment is requ i red .

Example :

PLOT
Command
Syntax : PLOT m , n

1 00 PRINT " ENTER C I RCLE RAD I U S " ;
1 1 0 INPUT R
1 20 PRINT R
1 30 PRINT "AREA I S " ; R* *2*PI

(start the "clock")
(keep count of secs)

(see if it 's altered)
(occurs every 5 . 1 2s)

Puts a black quarter graphic character at the coord inates g iven i n the PLOT argument.
The coord inates fol low Cartesian conventions - i .e . horizontal address is specified fi rst .
The horizontal address may be 0< = m < = 63, and vertical address may be 0 < = n < = 43 .
Coord inate 0 ,0 represents the bottom left-hand corner of the screen display, wh i le 63,43 represents

222

)

the top right-hand corner.
Subsequent PRINT statements wil l pr int data fo l lowing the p lotted cha racter.

Examp le :
This p rog ram "draws" a d ie face on the screen :

POKE
Command
Syntax : POKE n , m

2 0 FOR X=22 TO 38
30 PLOT X,6
50 PLOT X,22
70 NEXT X
80 FOR Y=6 TO 22

1 00 PLOT 22,Y
1 20 PLOT 38,Y
1 40 NEXT Y
1 60 PLOT 26, 1 0
1 80 PLOT 34, 1 0
2 1 0 PLOT 30, 1 4
240 PLOT 26, 1 8
260 PLOT 34, 1 8
300 STOP

draw horizontal l i nes

d raw vertical l i nes

I these l ines d raw the spots

POKE a l lows the contents of a memory location to be altered to any desi red value .

Appendix C

n specifies the address of a byte to be changed, and m the va l ue desired in that location. Note that m
can on ly have a range of 0 < = m < =255 (unsigned) s ince POKE wi l l only operate on one byte. As with
PEEK, it is necessary to have routines to split a two byte variable i nto composite parts ready for
POKEing.

The com mon use for POKE is to a l low machine code routines to be inserted in spare memory and
executed v ia the USR function . Because POKE operates in decimal va lues, a chart of the Z80 i nstruction
set is requ i red which g ives the machine code equ iva lents i n both hex and decima l .

It is not the purpose of th is book to make the world profic ient in machine code prog ramming - refer to
the read ing l ist in Chapter 1 1 .

One way of creating some ava i lable RAM for your routine is to inc lude a REM statement as the F l R ST
command i n a progra m . The REM should contain just a series of fu l l-stops (one for each byte of p rog ra m
space requ i red) . The RAM address o f the fi rst fu l l-stop under these conditions i s 1 65 1 4.

Another method is to a lter the va lue of system variab le RAMBOT (see Sincla ir Handbook) and POKE
the routine into the reserved a rea.

Example :
1 REM

1 0 LET X= 1 65 1 4
2 0 POKE X, 1
30 POKE X+ 1 , 1 00
40 POKE X+2,0
50 POKE X+3,201
60 LET J = USR X

This s i l ly routine causes variable J to be assigned the va lue 1 00 (it wou ld have been qu icker to write
LET J= 1 00 but this is rea l ly to demonstrate how POKE and USR work) . The equ ivalent assembly code
set up by these POKEs is :

LD BC, 1 00 ; 1 , 1 00,0
R ET ; 20 1

By us ing va riable X to conta i n the base address. several benefits are gained ; it takes less p rogram
space to refer to X + n rather than a numeric l iteral such as 1 65 1 4 and should the system RAM addresses
alter in futu re versions of BAS I C , you wi l l on ly have one or two places to a lter your programs rather than
every s ingle POKE.

223

Appendix C

PRINT
Command
Syntax: PRINT [e] Le] [; e] [AT n ,m] [TAB n]

PRINT causes information to be displayed on the screen , by bu i ld ing up a pictu re of the screen in a
buffer area . Both numeric and string arguments a re acceptable, in any mix or quantity. Arguments a re
separated by either a comma or semi-colon (see below) .

Each a rgument can be a complex expression, which gives PRINT probably more power than any other
single command.

If an expression is term inated by a semi-colon, then the next printed expression wi l l be appended to
this with no intervening spaces . If an expression is terminated by a comma, then the next item printed
wi l l be positioned at the next pr int zone on the screen, where zones a re p laced at intervals of 1 6
characters . This g ives a l ine length of 2 fields (2 fields of 1 6 characters each) . If a f ie ld is 1 5 or more
characters in length when converted for d isplay, then the next item wi l l be positioned at the fol lowing
print zone . This ensures that at least one space is left between each displayed f ie ld .

If the last expression (i f any is present) is terminated by a space, then this i nd icates that there is no
more data to be printed on this l i ne, and further PRINTed items a re to start a new l ine .

The TAB n option forces the print position to be moved to column n of the current l i ne . I f the print
position has passed col umn n , then the print position is moved to the same column on the next l ine
down.

The AT n ,m option a l lows a l ine n and colu m n m to be s pecified. The pr int position is moved to th is
address on the d isplay. Both n and m must be va l id l i ne (0< = n < = 2 1) and column (0< = m< =3 1)
numbers, else error report B i s given .

Note that it wou ld be fai rly mean ingless to fol low the AT and TAB options by anyth ing other than a
semi-colon, since the pr int position would be a ltered aga in .

Examples :
(a) 300 FOR X = 1 TO 1 0

(b)

(c)

(d)

3 1 0 PRINT X; " SQUARED IS " ; X**2
320 NEXT X

I n th is example, the text "SQUARED IS" contains a space at the beg in n ing and end . This is to
a l low for the fact that the semi-colon f ield separator does not leave a b lank position between
f ields.

1 00 REM PRINT ALL TH E G RAPH ICS
1 1 0 PRINT " NORMAL" , " I NVERSE"
1 20 FOR A= 1 TO 1 0
1 30 PRINT " " ; CHR$(A) ," " ; CHR$(A + 1 28)
1 40 NEXT A

Here, the "space" strings a re to position the g raph ic character centra l ly underneath the column
headings. A comma after the fi rst CHR$ function ensu res that the next f ield fa l ls i nto l i ne at a print
zone underneath the next head ing .

1 00 PRINT AT 0,0 ; "TO P" ; AT 2 1 ,26; " BOTTO M"

200 FOR X=24 TO 0 STEP - 2
2 1 0 PRINT TAB X ; " D IAGONAL"
220 NEXT X

RAND
Command
Syntax: RAND [n]

This command causes the random number generator seed to be i n it ial ised from the screen frame
counter. If a non-zero nu meric a rg ument is present, then the seed is taken as this value .

Random numbers a re taken from a series one-by-one as the RND function is ca l led . However, th i s can
mean that every t ime the computer is switched on, an identical series is obta ined . The RAND command

224

')

)

)

)

)

Appendix C

forces a new seed to be used, and therefore causes the series to be entered at a d ifferent point each
t ime.

Example :
5 REM ROLL A D I E

1 0 RAND
20 LET D = INT (RND*6) + 1
30 CLS
40 PRINT "YO U ROLLED A " ; D
50 PRINT
60 PRINT " PR ESS N EWLI N E TO RO LL"
70 PAUSE 40000
80 GOTO 20

If you alter l i ne 1 0 to :

1 0 RAND 5

then every t ime you run the program, the d ie rol ls wi l l g ive the same sequence of numbers .

REM
Com mand

The REM com mand a l lows remarks or comments to be entered i nto the body of the program to serve as
a form of annotation as to the workings of the code .

It i s good practice to spr inkle a program l ibera l ly with REM statements so that not on ly you (trying to
debug you r game i n five years' t ime) . but others may understand your tra in of thought i n the f low of
logic .

U nfortunately, REM statements eat u p the ava i lable RAM and in the basic 1 K RAM system this can be
qu ite a problem . However. there a re two solutions to th is :

(a) Annotate you r program l istings on paper and ensure that a copy of th is paper accompanies the
cassette conta in ing the p rogram.

(b) Use PRINT commands (aga in , watch the memory l im its) to inform the program user as to the way
in which the program is to be used . Th is wi l l norma l ly prevent people from wanting to poke around
ins ide you r cod ing !

As more memory becomes ava i lable. the number of REM commands found i n a prog ram shou ld
increase d ramatica l ly.

RETURN
Command

Retu rns program control to the l ine fol lowing the last GOSUB encountered . This is normal ly the last l i ne
found i n a subrout ine.

Study the exa mples under GOSUB.

RND
Numeric va lue
Syntax : RND

Suppl ies the next n umber from a series of random numbers . Th is uses a seed to generate the series
(wh ich can be assigned using RANDOMISE) . No a rgu ment is requ i red .

225

Appendix C

The va lue retu rned is in the range 0<=n< 1 , so it is necessa ry to mu ltiply this va lue by a number m
(m> 1) in o rder to obta i n a random number 0 < = r<m.

Examples :
(a)

(b)

1 0 LET N = INT (RND* 1 00) + 1
2 0 PRINT " I AM TH I N K I NG O F A"
30 PRINT " N U M B E R B ETWE E N 1 AND 1 00"

1 00 IF INT (RND*4) + 1 = 1 THEN PRINT "TH IS M E SSAG E I S O N E IN FOU R"

This last example is a handy way of supplying i nformation to a program user f rom t ime to time
(for example if stuck in a maze game) .

RUN
Command
Syntax: RUN [n]

Forces program execution to commence at l ine number n , o r if n is absent or zero, then at the fi rst l i ne of
program.

Al l variables a re clea red when this command is entered . I f you need to reta in the variables, then use
GOTO n rather than RUN.

Examples :
(a)

(b)

SAVE
Com mand
Syntax : SA VE s

RUN 0

RUN 200

(starts at f i rst program l ine)

(starts at l ine 200, or the f i rst one encountered after if 200 is not
present)

Allows a p rogram in memory to be saved on cassette tape with name s. The tape should be positioned
ready, and runn ing in record mode when the NEWLINE is entered .

The command can be used in immediate mode or with i n a p rogram .
A l l assigned variables a re stored with the program, and so data can be "stored" from one run to

another. See Chapter 6 for fu l l detai ls of using the cassette.

Example :
9900 SAVE " G RAPH "
991 0 GOTO 1

This prog ram wi l l a utomatica l ly start runn ing when reloaded from cassette - see Chapter 6 .

SCROLL
Command

Moves the screen buffer up one l ine , creating a blank l i ne at the bottom (i . e . l ine 2 1) and moving the print
pos ition to the f i rst col u m n of the bla nk l ine created. This a l lows "teletype" faci l it ies of a sort to be used.

Example :

SGN
Numeric fu nction
Syntax : SGN n

see example under PAUSE.

Answers with the sign of the argu ment.
If the argument is g reater than zero, then the reply is 1 . I f the a rgu ment is less than zero, the reply is

226

)

)

- 1 . If the a rgument is exactly zero, then the reply is zero.

Example :
Th is rout ine rounds a va lue to the nearest integer :

SIN
Numeric fu nction
Syntax : SIN n

1 00 LET V= INT (ABS V+0 .5) *SGN V

G ives the s ine va lue of the a rgu ment in rad ians .

Example :

SLOW
Command

361 0 PRINT SIN A

Appendix C

This com mand puts the ZX8 1 i nto slow mode, or "compute-and-display" mode, where computed
results are displayed s imu ltaneously to program execution .

The m a i n pena lty paid for th is l uxu ry is that o f speed o f execution, which i s fou r t imes slower than fast
mode.

There a re few programs which cannot be written to run in either fast or slow mode (remember that
ZXBO users with the ZX81 BAS I C BK ROM insta l led cannot use slow mode - the ZX80 always runs in
fast mode) , but two examples have been g iven in th is cou rse - program TRACE, and example (b) under
PEEK, which uses the t imer faci l ity of the screen refresh cou nter.

Whenever the ZX8 1 is switched on, or the NEW command is used, s low mode is automatica l ly
selected.

Example :
1 REM PROG RAM TO USE TH E TI M E R

1 0 SLOW

(see the example under PEEK)

SQR
Numeric function
Syntax : SQR n

Gives the square root of the a rgument. E rror B is g iven if n is negative.

Example :

STR$
String funct ion
Syntax : STR$ n

1 00 REM CALCU LATE HYPOTENUSE
1 1 0 PRINT " E NTER BASE"
1 20 INPUT B
1 30 PRINT " E NTER H E I G HT"
1 40 INPUT H
1 50 PRINT " HYPOTENUSE IS " ; SQR (B * *2 + H * *2)

Converts a numeric expression into str ing form . This a l lows more deta i led processi ng of data items. The

227

Appendix C

result ing stri ng i s only as long as the item wou ld be if pri nted - i .e . no lead ing spaces o r zeros are
suppl ied.

Example :

STOP
Command

1 REM P R I NT N U M B E R WITH LEAD I N G ZEROS
1 0 INPUT N
1 5 LET N = INT N
20 LET N$=STR$(N)
30 FOR X= 1 TO 1 0 - LEN N$
40 PRINT "0" ;
50 NEXT X
60 PRINT N$

Forces program execution to stop at the cu rrent l ine . The screen buffer is displayed and an error code is
given at the foot of the screen in the form 9/LLLL where LLLL is the l ine number conta in ing STOP. The
program can be restarted by using CONT.

Examples :
(a)

(b)

TAN
Numeric function
Syntax: TAN n

20 REM*CHECK IF N U M B E R I N RM�GE
30 IF N>0 AND N < 1 0 THEN GOTO 1 00
40 PRINT " N U M B E R OUT O F RANG E"
50 STOP

300 PRINT "WHAT N EXT? "
3 1 0 INPUT N$
320 IF N$= " F I N I S H " THEN GOTO 9999
330 IF N$="END" THEN GOTO 9999

9999 STOP

G ives the tangent value of the a rgument, which must be in rad ians.

Example :

UN PLOT
Command

230 LET T=TAN X

Syntax : UNPLOT m , n

Erases a pixel created previous ly by PLOT. The print position i nd icator i s updated to the new " m , n"
position . See PLOT for deta i ls of checks made on m and n .

Example :
To erase the centre spot created in the example under PLOT, thus making the d ie face i nto a "four"
instead of a "f ive" -

228

400 UNPLOT 30, 1 4
4 1 0 STOP

)

l
J

Appendix C

USR
Numeric function
Syntax : USR n

Forces a cal l to a machine code routine at memory address n .
On return from the routine, t h e contents of the BC registers are taken as the function va lue.
A machine coded routine must not use (in any way) registers A' F' IX and R, and it is advisable not to

use registers IY and I .
I n order t o set up a machine code routine, i t is necessary t o use POKE t o i nsta l l a byte a t a t ime (see a

ful l example of this u nder "POKE") . An a lternative metho<'.l is to create an array using LET statements,
then calcu late the address of the array us ing the system variable VARS (see ZX8 1 Handbook, chapters
28 and 29) .

Example :

VAL
Numeric function
Syntax : VAL s

See example under POKE

The VAL function g ives the numeric equ ivalent of the string expression argument that fol lows .
If the string expression does not evaluate to a numeric equivalent, then error report C wi l l be give n .
I t i s possible for the VAL function t o b e g iven a string expression conta in ing variable names, a lthough

such a function m ust appear as the f irst item with in any larger expression. Where the string expression
is made up of more complex expressions, error reports other than report C may be g iven (e .g . error 2) .

Examples :
(a)

(b)

20 LET VARA=20
30 LET M$=" * 1 00 "
4 0 LET S$= "VARA"
50 PRINT VAL (S$ + M$)

200 LET N U M = 53

300 PRINT VAL STR$ N U M

VAL a n d STR$ have oppos ite effects .

<Variable>

A variable can represent one of four items :
(a) S imple numeric float ing point va lue
(b) An array element
(c) Contro l loop variable
(d) String variable

Variab le names:
Type (a) can be of any length : e .g . J , E R RORCOU NT, TOTAL

Type (b) m ust be a s ing le character, optional ly fol lowed by a $ symbol, fol lowed by a subscripting
variable (which may be any nu meric expression) e .g . 0 (5) , X$(TOTAL), T((X= 1) *5 OR
(X=0)*6)

Type (c) m ust be a s ing le character e .g . X, E

Type (d) m ust be a s ing le character suffixed by $ e .g . T$, B$

Maximum values :
Al l numeric variables (types a, b and c) a re accurate to 9 .5 sign ificant d ig its, thus the longest accurate

229

Appendix C

number that can be held is 4,294,967,295. The largest va lue that can be held (regard less of accuracy in
lower orders) is approximately 1 OE38, and the smal lest is a pproximately 4* 1 OE - 39 .

Strings can be of any length (although a string variable name can on ly be one character fol lowed by a
$) .

230

)

)

Appendix D

Report Codes
Each poss ib le report code is shown here, with an example of how it may have a risen . Some reports a re
merely to tel l you the status of the ZX8 1 (l i ke BREAK key pressed) whi le others are as a resu lt of
programming errors and may be more d ifficult to detect. The l i ne nu mber of the error report is give n as
the second of the two numbers .

Report Code

0

Meaning

A prog ram (or d i rect command) has completed successfu l ly . This can also occur
when a GOTO is used to jump to a l ine number that is higher than the h ighest l i ne
number i n the prog ram .

A NEXT statement has been found for which an appropriate contro l variable has
not been set up, although an ord i na ry variable with the correct name has been
found. An example :

1 0 LET X = 1
20 PRINT " H I TH E R E "
3 0 NEXT X

2 An undefi ned va riab le name has been used . If the variable is an ord inary variable,
then i t must be assigned with LET before it can be used in other com mands. If the
variable is an a rray, then it should be assigned with a DIM statement. A common
cause of this error is e ither absent-mindedness or a typi ng m istake ! E .g . :

1 0 LET N M B E R =23
20 PRINT N U M B E R

3 Subscript out of range. E .g .
1 0 DIM A(5)
20 LET A(1 2)=32

or . . .
1 0 LET X$= "ABCD E FG H I "
2 0 PRINT X$(1 2)

Both wi l l g ive report 3/20 .

4 Not enough memory in the ZX81 to complete this command or statement. Read
this section in "Common Problems and Solutions" .

5 Screen d isplay fu l l . CONT wi l l a l low the program to restart with a blank screen .
This i s covered qu ite extens ively i n Chapters 3 a n d 4 .

6 Arithmetic overflow. A calculat ion has resulted i n a nu mber larger than
approximately 1 038. E .g .

PRINT 1 0E25* 1 0 E25

7 A RETURN statement has been found when no GOSUB statement was give n .

8 INPUT has been used as an immediate com mand, and this is not a l lowed .

9 A STOP statement has been found i n a prog ram. If you enter CONT, the ZX81 wi l l
cont inue from the next l i ne number.

A You have tried to use a function incorrectly, e .g . PRINT SOR - 1 . This can happen
with SOR, LN, AS N and ACS.

B An inva l id number has been found . Certa in statements requ i re numbers with in a
range (for example GOTO req u i res a l ine number i n the range 1 to 9999) . If th is

231

Appendix D

232

number is beyond a su itable range, then error report B is given . Look at the l ine
that has caused the problem and refer to the chapter (use the I ndex) that deals
with the part icular command. A common mista ke occurs with PLOT and
UNPLOT, a lso PRINT AT y,x.

C The string expression used after a VAL function does not represent a val id
numeric expression, e .g . :

LET E =VAL "32X.66"

D BREAK key pressed, or STOP used as the fi rst item in an i nput expression .

E Not used.

F A SAVE command has been g iven with an empty p rogram name string, e .g .
SAVE ""

)

I ndex

�) I N DEX Condit ional expression va lues 62, 93
Conditional GOTO 60

A Conditional string expressions 1 45
Connecting up 5

ABS 32, 70 CONT 58
ACS 32 Control variable l im its 83
"Action" box 78 Control va riables 82
AND 62 COPY 1 1 1
Annotation 44 CORAL 9
"ARC H E RY" 1 88 "CREATE" 1 70
"AREA1 " 41 Creating an a rray 1 64
"AREA2" 44 Cursor 6, 1 5
"AR EA3" 5 1 Cursor control 46
Area of rectangle 1 3 Cursor keys 47
Arithmetic operators 1 3
ASN 32
Assig n ing variables 29 D
AT 1 02
ATN 32 " Decision" box 78

/)
Defin it ion of a program 40
Deleting statements 48

B DIM 1 64
D i rect commands 1 5

Backing store 8 Disk packs 8
BAS I C 9 , 1 95 D isplay 8
BAS I C i nterpreter 1 95 Dol lar s ign 1 43
" B I G O N E " 48
Boolean log ic 1 97
Bracketed expressions 2 1 E
B R EA K 58

E (scientific notation) 27 Byte 1 95
Byte address 1 95 ED IT 46

Byte va lue range 1 95 Editi ng 46
Empty string 1 52, 1 53
" Equals" 1 4

c E R N I E 1 81
" EXAM PLE" 1 1 9

Calcu lators 1 3 EXP 32
Cassette g u ide l ines 1 1 7

} Cha ined ca lcu lations 20
Characters 1 54 F
Checking syntax 1 6 Ocursor 1 5, 30
CHR$ 1 56 False 62
CLEAR 1 88 FAST 96
CLS 99 " F I NANCE" 1 90
COB O L 9 FOR 82, 201
CODE 1 56 FOR loops - why use them? 1 59
Code numbe rs 1 54 FORTRAN 9
"CODES" 1 54 F loppy d isks 8
Comma separator 50 F lowchart ing 77
Commands 1 4 F lowchart ing - when to 88
Commands & statements 42 Fu nction 1 5
Command sequencing 39 FU NCflON 30
Complex condit ional express ions 67 Further reading l i st 1 97
Compl icated calcu lat ions 1 9
Compute & d isplay 98
Computer p rogram 40 G
Computers 7
Computer systems 7 [!)cursor 1 5, 1 09
Concatenation 1 46 GOSUB 1 28
Cond it ional expressions 60 GOTO 57, 201

233

I ndex

" G RAPH" 1 25 N
Graphics 1 09 "NAMES" 1 65
Graph plotting 1 32 Nested brackets 2 1

Nested loops 85

H
Nested subroutines 1 30
NEW 37

Hard copy 9 NEWL I N E 7 , 1 5
H idden code games 1 83 NEXT 82
Home f inance 1 90 NOT 70
How the ZX81 sees things 1 54 Numeric a rrays 1 70
How to store commands 37 Numerical expressions 26

0
IF 60 Operator priorit ies 67
INKEY$ 1 87 OR 62
INPUT 41 , 1 43
I nput expressions 1 35
INT 32, 69 p
I nteractive games 1 83 I

PASCAL 9 ''-
I nverse video 1 09 PAUSE 97, 1 07
Iteration 57, 82 PEEK 1 96 Iteration - what is it? 57 Pl 32

"P ICTU RE" 1 09

K Pixel 1 32
PLOT 1 32

13cursor 6 POKE 1 07 , 1 95
K un its 8 Prime number (def in it ion) 77
Keyboard 8 " PR I M ES" 86
Keywords 5 PRINT 1 4

Printing text 44
Print formatting 49, 1 01

L Print zones 50

II cursor 6 Priorities 67

LEN 1 50 Program cursor 46

LET 23 Program design 77

Line numbers 37 Program editing 46

40 Program l ib ra ries 1 1 8 ') LIST
LUST 1 1 1
LN 32 Q
LOAD 6, 4 1
Load-and-go programs 1 20 Quote image 1 45
Loading unknown programs 1 1 8
Logical operators 62
" LOOPER" 58 R

LPRINT 1 1 1 RAND 1 81
Random Access Memory (RAM) 8

M
Random numbe rs 1 81
" RATES" 1 73

Machine code 1 96 Read On ly Memory (ROM) 8
Mainframe computers 8 Relational operators 61
"MASTE R M I N D " 1 84 REM 44, 201
Mathematical functions 30 Report codes 1 5
Memory 8 RETURN 1 28
Menu screen 1 9 1 R ight-a l igned val ues 1 92
M icrocomputer 8 RND 1 81
Microsoft BAS I C 203 RUBOUT 6, 1 6
Multi-d imensional a rrays 1 76 RUN 7 , 4 1

234

Runn ing modes 96

s
t=:lcu rsor 1 5
SAVE 1 1 5
Saving variables 1 20
Scientific notation 27
Screen coordinates 1 33
Screen frame count 1 82
SCROLL 1 05
"SCROLLER" 1 05
Semi-colon separator 49
Setting up the cassette 5, 1 1 5
SGN 32, 69
S H I FT 6
Showing the d isplay 97
SIN 32
Sine wave 1 06

) Sl icers 1 50
SLOW 96
Sound of prog rams on cassette 1 1 7
Speed comparisons 96
"SPEEDY" 93
SQR 30
"STARTE RS" 6
Statements 42
STEP 84
STOP 58
Stopping a program 58
"STRATEGY" 1 75
Strategy games 1 83
String a rrays 1 63
String comparisons 1 55
String expressions 1 46
String functions 1 48
String representation 1 54
Strings 1 09, 1 43

) String s l ic ing 1 50
String variables 1 43
STR$ 1 48
Subroutines 1 25
Subroutines (definit ion of) 1 25
Subroutines - repl ies 1 30
Subroutines - why use them ? 1 29
Subscripts 1 68
Substrings 1 52
"Supercharged bumblebee" 1 1 7
"SWO PPE R" 1 57
Syntax errors 1 5
System variables 1 97

T

TAB 1 03
"Tab" key 50
Tabulating print 1 03
Teletype 1 05
"TESTER" 1 1 5

Text
THEN
"TRACE"
True
True/false expressions
Two-dimensional arrays

u
U ndefined l ine number
UN PLOT
Us ing graph ics
USR

v
VAL
Variable names
Variables
Variables (saving on tape)
VDU

z
Z80 microprocessor
ZX printer

. separator
; separator

II II (SH I FT/0)
(symbol
) symbol
$ symbol
+ operator
- operator
* operator
I operator
* * operator
= symbol
> symbol
< symbol
< = symbol
> = symbol
<> symbol
<) cursor key
o cu rsor key
o cu rsor key
¢ cursor key
9/9999
II marker

I ndex

45
60

97, 1 89
62
93

1 7 1

58
1 32
1 09
1 96

1 57
24
23

1 1 9
8

8, 1 97
9, 1 1 1

50
49

1 45
20

1 6, 20
1 43

1 3, 1 46
1 3
1 3
1 3
1 9
61
61
61
61
61
61
1 6
47
47
1 6

7
47

235

ABOUT THE AUTHOR

Trevor Toms has been in the com puter industry since 1 970 ; most of this t ime was
spent with a computer bureau working on computer operati ng systems and
commercia l bus iness programs for mainframes and microcomputers . Later he
wrote the mu lti-user operating system for an 8080 based com mercial system . He
is now a partner of Ph ipps Associates, 3 Downs Avenue, Epsom, who specia l ise
in microcomputer appl ications . He is the author of "The ZX80 Pocket Book" .

H is hobbies inc lude m usic (playing banjo for the Boodle-um J ug Stompers).
comic collecting and playing with the ZX8 1 !

Printed by
The Leagrave Press Ltd

Luton and London

f ') .

,,, ' .
)

	Scanned-image-1-0
	Scanned-image
	Scanned-image-1
	Scanned-image-2

