

More than a million people have learned to program, use, and enjoy microcomputers
with Wiley paperback guides. Look for them all at your favorite bookshop or computer
store:

BASIC, 2nd ed . , Albrecht, Finkel, & Brown
BASIC for Home Computers, Albrecht, Finkel, & Brown
TRS-80 BASIC, Albrecht, I nman, & Zamora
More TRS-80 BASIC, inman, Zamora, & Albrecht
AT ARI BASIC, Albrecht, Finkel, & Brown
Data File Programming in BASIC, Finkel & Brown
Data File Programming for the Apple Computer, Finkel & Brown
AT ARI Sound & Graphics, Moore, Lower, & Albrecht
Using CP /M, Fernandez & Ashley
I ntroduction to 8080/8085 Assembly Language Programming, Fernandez & Ashley
8080/280 Assembly Language, Miller
Personal Computing, McGlynn
Why Do You Need a Personal Computer? Leventhal & Stafford
Problem-Solving on the TRS-80 Pocket Computer, I nman & Conlan
Using Programmable Calculators for Business, Hohenstein
How to Buy the Right Small Business Computer System, Smolin
The TRS-80 Means Business, Lewis
ANS COBOL, 2nd ed., Ashley
Structured COBOL, Ashley
FORTRAN IV, 2nd ed., Friedmann, Greenberg, & Hoffberg
Job Control Language, Ashley & Fernandez
Background Math for a Computer World, 2nd ed., Ashley
Flowcharting, Stern
I ntroduction to Data Professing, 2nd ed ., Harris

.· · .. �·
'

PROBLEM-SOLVING ON THE
TRS-80 POCKET COMPUTER@

DON INMAN

JIM CONLAN

Dymax Corporation
Menlo Park, California

John Wiley & Sons, Inc.

New York • Chichester • Brisbane • Toronto • Singapore

L __ - �·-.��-��--____;----------------....-

--�-�- � -- -�--------------------------

Copyright© 1 982, by John Wiley & Sons, Inc.

All rights reserved . Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Sections 1 07 or 1 08 of the 1 976
United States Copyright Act without the permission of
the copyright owner is unlawful. Requests for permission
or further information should be addressed to the
Permissions Department, John Wiley & Sons, Inc.

�,.
Library of Congress Nwriber 81-10358

ISBN: 0 471 09270-J
ISBN: 0 471 86808-6 RS

Printed in the United States of America

82 83 1 0 9 8 7 6 5 4 3 2

- __ _J

Contents
·Chapter I Pocket View of the Pocket Computer

Chapter 2 Applications, Memory Use, and Definable Mode 25

Chapter 3 Error Codes, Editing, and Cassette Use 52

Chapter 4 Data Files 75

Chapter 5 Trigonometric Functions 96

Chapter 6 Operation Time, Logic Functions, and Binary Bins 1 28

Chapter 7 Feedback and Systems 1 45

Chapter 8 Random Walk 1 6 1

Chapter 9 Computing Interest 1 83

Chapter 1 0 Storing, Sorting, and Searching (Or How To Make Sure

You Know Where It's At) 1 99

Chapter 1 1 Chaining Programs from Cassette 2 1 6

Chapter 1 2 The TRS-80 Pocket Computer Printer 224

Appendix A BASIC Statements and Commands 243

Appendix B Special BASIC Functions 246

Appendix C Acceptable Abbreviations for BASIC Statements,

Commands, and Special Functions 247

Appendix D Error Codes 249

Appendix E Printer Terms 25 1

I ndex 253

l

l. I _ _

TO THE READER

Microcomputers continue to appear in more and more places. As they become smaller,
they become more portable and, hence, useful in more places. The Radio Shack TRS-
80 Pocket Computer is the ultimate in portability. It can be tucked away in your
pocket and used wherever you go. Due to its portability, new uses will be continually
discovered for this versatile tool.

This book shows a wide variety of problems that are easily solved with the Pocket
Computer. Although some problems may seem to be presented with tongue in cheek,

. don't let the light-hearted approach fool you. All demonstration programs are practi
cal in some way and, hopefully, will coax you to further applications. The problems
cover a wide range of difficulty, but hints are provided that may be either used or ig
nored as your needs demand.

We assume that you have some familiarity with computing and with BASIC lan
guage as used on other computers. If you have never encountered BASIC language,
we suggest TRS-80 BASIC; Albrecht, Inman, and Zamora; John Wiley & Sons, Inc.,
I 980. (It is also sold at Radio Shack stores under the title TRS-80 Level II BASIC.)

Our book has been organized to meet two main objectives:

I. Teaching the Tool - The TRS-80 Pocket Computer BASIC language
and the use of the Pocket Computer's keyboard dominate the early chap
ters in the book. Problems are introduced as demonstrations to facilitate
this objective.

2 . Teaching Problem Solving Techniques - The techniques of problem solv
ing dominate the discussions in the later chapters. Here the computer is
regarded as a precision tool that is used to solve problems.

After covering the first five chapters, you will be able to make full use of the
Pocket Computer. You will then be ready to solve the numerous problems that follow.
Many different types of problems demonstrating a wide variety of applications are
given throughout the book. Hints that are provided for the solutions to the problems
are often quite extensive. You may choose not to use them, but they are there if you
need them.

Often, more than one solution is given for a problem. This is true to life. There
are many ways to solve most problems, and we do not all solve our problems in the
same way.

The TRS-80 Pocket Computer is the tool used in this book. It is a small, but so
phisticated, tool. You will find that the more that you use it, the more useful it is to
you. This book is designed to help you explore the Pocket Computer in depth so that
you can use it successfully in solving problems that you encounter outside of this book.

as•

CHAPTER ONE

Pocket View of the Pocket Computer

The TRS-80 Pocket Computer is a unique mixture of a programmable calculator and
a general-purpose computer. Although this book's main purpose is to illustrate proce
dures and techniques for solving problems with the Pocket Computer, some space
must be allotted to a description of this unique problem-solving tool. Like any artisan,
the problem solver is dependent on the tools that are available, and the ability to make
use of fine tools is dependent on one's understanding of them.

This chapter is, therefore, devoted to the introduction of the capabilities of the
. TRS-80 Pocket Computer. In this chapter you will:

• become acquainted with the general characteristics of the Pocket
Computer;

• learn how characters appear on the display;
• discover what kind of variables can be used in a program;
• learn a few BASIC commands and statements that are unique to the

Pocket Computer or are used in unique ways;
• discover four different operating modes;
• learn how to use some keys in two different ways;
• learn something about error codes a�d how to clear them;
• discover PAUSE, a new form of the PRINT statement;
• learn all about the NEW statement;
• learn how to DEBUG programs;
• learn how to check for the amount of unused memory; and
• learn how to continue an interrupted progra�.

The TRS-80 Pocket Computer can be used as a ca\�ulator, as described in the
TRS-80 Pocket Computer Software Manual (Catalog Number 26-350 1) that comes
with the computer. There are many wondrous features io be exploited in the calculator
mode - you can even find the solution to an algebraic equation. For example, if you
have previously entered a value for the variables A, B, arid C, the Pocket Computer is
capable of solving the square root of the following expression.

(y(B * B + 4 * A * C -)

2 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Each of the symbols shown in the example is entered from the keyboard of the Pocket
Computer. When you press the ENTER key, the result is displayed.

Description of the Pocket Computer

Imagine carrying around the power of a BASIC-speaking computer in your pocket.
No longer are you tied to a computer room or office desk - or even an electric
company. Just tuck the computer into your shirt pocket and take it with you wherever
a problem exists.

Note: We didn't say tuck the computer into your back
pants pocket. The liquid crystal display (LCD) is made of
glass. If you sit down with it in your back pocket, you
may crunch the LCD.

As long as the Liquid Crystal Display has been mentioned, we might as well talk
about it first. If you're used to a 64-character, 1 6-line display of the TRS-80 Model I
or Model III (or something similar), the Pocket Computer's 24-character, I -line dis
play is going to take a little adjusting to. However, within a few minutes, you'll find
yourself writing shorter instructions. You may even find out that your programs be
come easier to read and understand because of the limit of the display size.

�� -----------

(__
,

_

o_PR

_

r

_

N

_

T_'

_

· s

_

H

_

o

_

R

_

T_r

_

Ns

_

T

_

R

_

u

_
_
_
�

The cursor is shown at the
24th position. What happens
when the next character is typed?

POCKET VIEW OF THE POCKET COMPUTER 3

Although only 24 characters are displayed, a BASIC line may contain a maxi
mum of 80 characters. Computer buffs would say, "The size of the input buffer is 80
characters." Let's not get so technical. What they mean is that you can only input 80
characters on one program line. The computer will hold all of them even though you
can't see them all at the same time on the display. If you continue to type the previous
line, you will see the letters move to the left on the display and off the other end.

c

c
c
c
(

10 PRINT ' ' SHORT INSTRUCT_

0 PRINT I ' SHORT INSTRUCT_

PRINT

PRINT

R I NT

I ' SHORT INSTRUCT!_

I I SHORT

I I SHORT

I NSTRUCT I O_

INSTRUCT I ON_

I NT ' ' SHORT I NSTRUCT I ONS_

N'r ' ' SHORT I NSTRUCT IONS ' ' -

� Cursor indicates
position of next
character to be
entered.

)
)
)
) There! The instruction's

complete, ready for you
to press ENTER.

Yes, the TRS-80 Pocket Computer has an ENTER key that works just like the
ENTER key on other TRS-80 computers (or like the RETURN key on some other
computers) . The Pocket Computer ENTER key looks like this:

ENTER

The keys of the Pocket Computer are small and closely spaced, but they have a
good feel and make clean contact. Numeric and arithmetic operation keys are in a sep
arate area on the right side of the keyboard. Your entries may not go as fast as if you
were touch-typing, but you'll soon get up to a respectable speed.

The computer can hold a maximum of 1 ,424 program steps. There are 26 fixed
memories (used for variables) and 1 78 flexible memories (shared between program
steps and variables). You'll learn all about the use of memory in Chapter 2. Calcula
tions are carried out to 1 0-digit accuracy.

4 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

The computer also has editing functions, which include shifting the cursor from
left or right, inserting characters, deleting characters, and shifting up or down one line
at a time. We'll discuss these functions in Chapter 3.

Calculating capabilities include four arithmetic operations, power calculations,
trigonometric and inverse trigonometric functions, logarithms and exponential func
tions, angular conversions, square roots, sign functions, absolute values, and integer
and logic functions.

Power is supplied by mercury batteries. Memory content is not lost when the
computer is turned off. Memory is protected (or saved) by the batteries when the rest
of the computer is turned off.

As interface is available for a cassette recorder to save programs and data on
tape and to retrieve them at a later time. There is also a 1 6-column printer that Radio
Shack sells, which includes an interface for both a recorder and the printer.

The computer itself is in a small package, 6?/s inches long, 2% inches wide, and
1 9 / 32 inches thick. Its weight is just over one-third of a pound. A carrying case, two
keyboard templates (more about them later), and a User's Manual are all included
with the computer.

TRS-80 Pocket Computer BASIC

The BASIC language used by the Pocket Computer can recognize both numeric and
string variables. A data memory is called a numeric variable when it stores a numeric
value. Numeric variables use labels, or names, such as A, B, C, A(l), A(28), etc. A
data memory is called a string variable when it contains a string of characters (limited
to seven letters, numbers, or special symbols) . String variables are distinguished by the
$ symbol and are labeled as A$, B$, C$, A$(1), etc.

CA UTI 0 N: There is a limit of 26 fixed memories used
to hold variables. A (a numeric variable) and A$ (a string
variable) both assign data to the same fixed memory.
This must not be done at the same time. Only one value
may be held in a given memory at a given time.

The Pocket Computer's memory is used in much the same way as that of a pro
grammable calculator. Here is how the fixed and flexible memories may be assigned if
no arrays are used. The use of memory for arrays is discussed in Chapter 2 .

...._ _________ __;;;;;;..;;;.. __ �---------------------- - ------ -

.-, ·1

Z orZ$
Y or Y$ � or X.$

Car C$
B or B$
A or A$

POCKET VIEW OF THE POCKET COMPUTER 5

1424 pr ogra m steps, or
178 da ta memor ies, or

a combina tion of th e tw o

26 fix ed memor ies
for da ta only

Any memory not used for program steps can be used for data memory, in addi
tion to the 26 fixed memories. This may be done when using arrays. The number of
data memories beyond the 26 fixed memories therefore depends upon how many steps
are used in the program. The free memory in the previous diagram is used for addi
tional program steps or data memories. In general, you may find out how much mem
ory is not being used by typing in the MEM command in any of the Pocket Computer's
operating modes. The display will then show how much data memory and how many
program steps are unused. This is more thoroughly discussed in Chapter 2 .

Basic Functions, Statements, Commands, and Tape Control Statements

Now let's take a look at the functions, statements, and commands available in Pocket
Computer BASIC.

ABS
ACS
ASN
ATN
cos
DEG
DMS
EXP
INT
LN
LOG
SGN
SIN
TAN
v Tr'

BASIC Functions

Absolute value
Arc cos
Arc sin
Arc tan
Cosine
Degree/minute/second to decimal
Decimal to degree/minute/second
Exponential function
Integer
Natural logarithm
Common logarithm
Sign (positive or negative)
Sine
Tangent
Square root
Pi

:1
I

6 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

AREAD

BEEP
CLEAR
DEGREE
END
FOR
GOSUB

GOTO
GRAD
IF

INPUT
LET
NEXT
PAUSE

PRINT

RADIAN
REM
RETURN
STEP
STOP
THEN
USING

CONT
DEBUG
LIST
MEM
NEW
RUN

CHAIN
CLO AD
CLO AD?
CSA VE
INPUT #
PRINT #

BASIC Statements

Contents displayed at start of definable program
are read into the specified variable
Beep sound is generated as many times as specified
Data memory clear
Degree is designated as angle measure
Indicates the end of a program
Beginning of FOR-NEXT loop
Execution is shifted to specified line or label
where a subroutine begins
Specified line or label is executed
Grad is designated as angle measure
Based on the specified condition, a branch is either
taken or not taken
Allows data to be input
Assigns a value to a variable
Ends a FOR-NEXT loop. Increments the step
Displays an output for approximately .85 seconds
before going on
Displays the specified contents and waits for
ENTER key to be pressed
Radian is designated as angle measure
Designates a non-executable statement
Returns from subroutine
Increments a FOR-NEXT loop
Stops the execution of a program
Used only with IF statement as a jump instruction
Format designation for display

BASIC Commands

Restart an interrupted program
Used to debug a program line by line
For listing a program in memory
Display amount of unused memory
Clear memory for a new program
Execute a program

Tape Control Statements

Program recorded on tape is read and executed
Transfer a program from tape to computer
Check contents of program with those placed on tape
Record a program on tape
Transfer data from tape to memory of computer
Record data memory contents on tape

POCKET VIEW OF THE POCKET COMPUTER 7

In writing this book, we assume that you have some knowledge of BASIC lan
guage. If you do not, we suggest you read TRS-80 BASIC; Albrecht, Inman, and
Zamora; Wiley & Sons, Inc., 1 980. As you look through the Pocket Computer's
BASIC commands and statements, you will recognize many of them. We will not
dwell on those statements and commands that are common to other computers. How
ever, the Pocket Computer has some new ones, as well as some familiar ones that are
used in different ways, which we will explain.

Modes of Operation

Before you are introduced to any more BASIC commands or statements, you should
take a look at the four available operating modes of the Pocket Computer.

1) Program mode (PRO)
2) Run mode (RUN)
3) Definable mode (DEF)
4) Reserve program mode (RESERVE)

The mode currently being used is displayed at the top of the display.

c DEF)
c RUN)
c PRO)
c RESERVE)

A mode key, MODE, changes the operating mode from left to right. The mode moves
clockwise, as indicated in the following diagram, each time the MODE key is pressed.

c __.DEF__. RUN__. PRO__. RESERVE =1
The operations carried on in each mode are briefly summarized as follows:

1) PRO - The program mode is used to write, enter, and edit programs.
2) RUN - The run mode is used to execute programs or for direct

calculations.
3) DEF - The definable mode is used to execute programs that have been

defined by a label.
4) RESERVE - The reserve program mode is used to write, enter, and edit

programs or functions for reserved keys that will be frequently used.

8 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

The use of BASIC commands and statements depends upon the operating mode
selected. In this chapter, you'll find out how to use the PRO and RUN modes. In ac
tual usage, the operating modes interact with each other and should not be considered
isolated from each other. Let's investigate the PRO mode first.

The Program Mode

Access the program mode by pressing the MODE key a number of times (depending
on the mode that you are presently in) until you see the PRO prompt on the top of the
display. When you turn the Pocket Computer on, it is always in the mode in which it
was last used.

Example:
Suppose you last used the RESER VE mode, and you want the PRO
mode now.

(RES ERVE)
Press the MODE key once, and you see:

(____ DEF _ __..)
Press the MODE key again, and you see:

c RUN)
Press the MODE key once more, and you see:

(____ PRO _ __,)
You are now in the mode normally used to enter programs into the computer's

memory. Lines of a program are numbered using integers ranging from 1 through 999.
When a line is complete, it is entered into memory by pressing the ENTER key. One
line may contain one or more statements. If more than one statement is used within a
line, the statements must be separated by a colon.

Example:
One statement per line:

�----------1� __ r_N_P_u_T _A ___________ � First line

POCKET VIEW OF THE POCKET COMPUTER 9

c
-����-2 ��

B_=_A_+_1_-����-
) Second line

Or two statements per line:

(1 � I NP UT A : B=A+1_) ' � I \
colon cursor

You may have trouble discovering how to display the colon. Notice that some of
the top two rows of keys have symbols above them.

� POWER

� The colon is the symbol above the I key.

OJ
To enter the colon, you must first press the SHIFT key and then the I key. This selects
the colon for entry. A shift designator appears on the display when the shift key is de
pressed: It tells the user that the next key stroke will be shifted.

SHIFT I (-�-SH-FT����---) t I I st then next When the shift key is pressed,
this appears on the display. .

If you should ever press the SHIFT key by mistake, press
it a second time. This will cancel the affect of the first
shift.

10 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

When the ENTER key has been pressed following the completion of a program
line, the line is entered into memory, and the line is displayed once again with a colon
following the line number.

We will not always remind you to press the ENTER key.
Just remember that it must be pressed at the end of each
program line.

C 1)l' : INPUT A : B=A+ 1)
__ -_-_:J----- - t--

colon follows
line number

colon separating two
statements on one line

If you should ever forget whether you have pressed the ENTER key or not, look
at the display. If the cursor shows at the end of the line and a colon does not show after
the line number,

C 1)l' I NPUT A : B=A+ 1 _)
----=-�J-----.7.;-�

no colon cursor

the ENTER key has not been pressed.
If the cursor does not show and there is a colon following the line numb-er, •

c 1)l' : INPUT A : B=A+ 1)
�---:====:J-+----//�'L-�

colon no cursor

the ENTER key has been pressed.
Suppose that you have pressed the ENTER key after the first statement at line

1 0. The computer waits for you to type in the next line of the program. It doesn't give
you any visual indication, but it is waiting for you to go on. Type in the next line. For
example, type

2)l' PRINT A , B

The comma is displayed by pressing
SHIFT, then the letter 0.

Do not put a colon here, the computer will do it
after you press the ENTER key.

POCKET VIEW OF THE POCKET COMPUTER 1 1

I f you put a colon of your own after the line number, the
computer will add another. You'll then get an error mes
sage when you run the program. (

-_

, ··
_

····
_

····
_

· ···

_

····
_
· ···

_

)

To enter line 20, the sequence of keys pressed should be:

2 0 SPC P R I N T SPC A SHIFT 0 B ENTER

The display would then show

c-���-2-�-:�P-R-IN -T�A-'-B���---=>

Now finish off the program by adding an END statement. Type 30 END, and
(of course) press ENTER.

The display:

C 3�:END) ----

The END statement is optional If it is not there, the computer will stop after the last
executable line. However, sometimes the END statement must be used to separate the
end of the program from data or other information that might follow.
We know that you are just itching to run the program that you just entered, so . . .

The RUN Mode

Suppose that you tried to run the program while you were in the PRO (Program)
mode. If you did, this is what you probably saw:

(
...__

,
_

· ··
-
· ·

-
PRO

_
·· ·

-
··

·
-
·)

As you know, this is an error code.

To clear an error code: press the red CL key.

- -, l
I

12 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

·You can't RUN a program while you are in the PRO mode. Press the MODE
key three times.

(RESERVE) First time

(DEF) Second time

(RUN) Third time

Now, you can type RUN.
If you remembered to press the ENTER key after typing RUN, you saw this:

(_?
___)

The question mark means ready for an INPUT. However, if you forgot to press
the ENTER key after typing the word RUN, the computer is still waiting at this point.

(__ RUN
_
_ �--------...:::----)

oe:::::::::::::
Press the enter key to see
the question mark prompt.

Try 25 for an input. Don't forget to press the ENTER key following the input. This is
what you will see:

C 2 5 .
�

/ There's A,
your input

26 .) .

� There's B,
(B = A + l)

When the Pocket Computer encounters a PRINT state
ment, it PRINTS the value specified and waits and waits
and waits. It will not do anything else until you press the
ENTER key.

When you press the ENTER key, the next statement:
3 iJ : END

is executed, and the ready prompt shows at the beginning of an otherwise empty line.

POCKET VIEW OF THE POCKET COMPUTER 13

The ready prompt indicates that the Pocket Computer is ready and waiting for the op
erator to input a command for it to do something.

(> �)
"""" the ready prompt

Most computers go on after a PRINT statement, but the Pocket Computer can
display only one line at a time. If it didn't stop and another PRINT statement were ex
ecuted, the first results would disappear from the display before you had a chance to
read them.

Let's change the program to print each variable on a separate line.

1 � I NPUT A : B=A+ 1
2 � PRINT A]-

...__------------- change these lines
3 � PRINT B
4 � END

Before you enter the changes, go to the PRO mode. Since you were last in the
RUN mode, you should only have to press the MODE key once. Then enter the new
lines (20, 30, and 40) and LIST the new program to make sure that it is correct.

The LIST command works only in the PRO mode. If you
try it in any other mode, you'll get an error code. (1 ·)

When you are in the PRO mode, you can successfully type LIST, and press the
ENTER key.

line.

C ;� : I NPUT A : B=A+ 1) ----
Press the down arrow key CT] once. This scrolls the program down to the next

C 2 � : PRINT A) ------
Press [}] again.

(3 � : P R I NT B)

14 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Press [iJ again.

C: 4i:i: END)
If you press I • I again, nothing else will happen. That's the end of the program.
Now, press the MODE key until the computer is in the RUN mode (three times

should do it). Type RUN and press ENTER. The program begins execution and the
input prompt appears.

(_?
___)

Type 25 (your input).

c 2 5 .)

Press the ENTER key to go on .

(2 6 .)

Press the ENTER key to END the program.

(_.....,.__f __ __.)
The ready prompt appears.

The value for A is
printed by line 20.

The value for Bis
printed by line 30.

Now you know how the PRINT statement works. You might not want the com
puter to stop after it has printed something. Wouldn't it be nice if it would just flash
the answer on the display for a brief time and go right on to the next statement? Well,
go back to the PRO mode once more and make these changes to your last program.

2 � PAUSE A
3 � PAUSE B

POCKET VIEW OF THE POCKET COMPUTER 15

Once you have entered the changes, go back to the RUN mode. Run the pro
gram. After you've typed in your input (25) and pressed ENTER, watch the right end
of the display closely.

(2 5 .) ON, then OFF

(2 6 .) ON, then OFF

(>) The program's over.

Did you see the computer display the 25 for almost a second, blink off, display
the 26 for about a second, blink off, and then display the prompt (>)?

PAUSE works the same way as PRINT, except execu
tion of the program is halted for 0.85 seconds. The com
puter then continues.

So, if your eyes are quick enough, you can flash results on the display without stopping
the computer. It merely makes a PAUSE before going on to the next statement.
What would happen if you said PAUSE in line 20 and PRINT in line 30? Try it by
changing these lines:

2i;l PAUSE A
3i;l P R I NT B

Once you've discovered what happens, write a program that will count from 1
through I 0. Each time, have the computer flash the counting number, then display
2rf times the counting number, then stop to wait for you to press the ENTER key be
fore going on.

Your Program

1 0

20

30

40

50

60

l

16 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

First type NEW.

In the DEF, RUN, OR PRO modes, NEW clears all pro
gram and data memories, but not reserve memories. In
the RESER VE mode, it clears all reserve memories, but
not program and data memories.

Then enter your program. Go to the RUN mode to execute it. This is what the
display shows:

c RUN)
(1 .) Flashes

c 6 . 2 8 3 1 8 5 3 (J 7) Stops

Press ENTER.

c 2 .) Flashes

c 1 2 . 56 6 3 7 (J 6 1) Stops

Press ENTER.

c 3 .) Flashes

c 1 8 . 8 4 9 5 5 5 9 2) Stops

Press ENTER.

c 1 (J .) Flashes

c 6 2 . 8 3 1 8 5 3 (J 7) Stops

POCKET VIEW OF THE POCKET COMPUTER 1 7

Press ENTER.

(__ > _____) End of program

Here's how we wrote our program:

1 0 FOR A= 1 'rO 1 0
20 B = 2 *71*A
3 0 PAUSE A
4 0 PRINT B
50 NEXT A
60 .END

Your program may look entirely different; but if it does the job, it is OK. No two
programmers do the same thing in the same way. If the program works, that's all
that's necessary.

Notice line 20 in our program.

The Pocket Computer has a built-in value of 1 0-digit ac
curacy. The'7f key is in the top row of keys and must be
"shifted."

1f
To enter, press SHIFT and then�.

Other than the'lf key, this program looks just like a BASIC program on most
other computers. Notice the accuracy displayed in the run.

The TRS-80 Pocket Computer displays numbers to 1 0
digits.

Of course, you knew that you were finding the circumference of a circle (B) with
the given radius (A) in the last program.

C = 21'f'r

18 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Most BASIC languages require the multiplication symbol (*) to be entered be
tween each of the values being multiplied. Do you think the previous program would
work if you changed line 20 to:

20 B=211 A

without the multiplication operator sign? Change the line and try it.

The Pocket Computer will do this as long as there's no
chance for misunderstanding. If you want to multiply two
constants, such as 3 times 5, 35 will not work - it has to
be 3 * 5; but 2A will work as well as 2 *A since one value is
a constant and one a variable.

Let's change the program slightly again. This time make both PRINT state
ments PAUSE. Also extend the upper limit of the FOR-NEXT loop to 1 00.

1 0 FOR A=1 TO 1 00
20 B=2*1f*A
3 0 PAUSE A 40 PAUSE B
s0 N EXT A 60 EN D-

Suppose that you want to see the program execute each step. Maybe you're not
sure it is operating as it should.

The Pocket Computer has a DEBUG command that al
lows you to watch the program execute line by line. The
DEBUG command is only effective in the DEF and
RUN modes.

l) Enter the program in the PRO mode.
2) Access the RUN mode.
3) Now DEBUG using the following steps:

' · · ···:

POCKET VIEW OF THE POCKET COMPUTER 19

You Display

type DEBUG c 1ji!:) Stops

press Q (2ji! :) Stops

press Q c 1 .) Flashes

(3ji! .) Stops

press � (6 . 2 8 3 1 8 5 3 0 7) Flashes

c 4ji!:) Stops

press Q (Sji!:) Stops

press Q c 2ji!:) Stops

press Q c 2 .) Flashes

c 3ji! :) Stops

press GJ c 1 2 . 5 6 6 3 7ji!6 1) Flashes

c 4ji!:) Stops

etc.

20 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

If the program had not been operating properly, you could have seen where the
error was occurring. The line number is displayed for each step. The • key is pressed
to go on to a new step in the program. Notice how the FOR-NEXT loop worked as the
program went back to line 1 0 after line 50 had been executed.

Do you wonder how much memory the program has used? You can find out.
Remember, the Pocket Computer has memory for 1 ,424 program steps or data memo
ries. If you are familiar with Radio Shack's Level II BASIC, you have probably used
the MEM command. You can also use it with the Pocket Computer.

key.

The MEM command functions in all modes. It will dis
play the number of program steps and flexible memories
not being used.

So, regardless of the mode that you are in, type MEM and press the ENTER

(1 3 8 6STEPS 1 7 3MEMORI ES)
There were 1 ,424 program steps or 1 78 data memories available before the pro

gram was entered. The display now shows that there are 1 ,386 program steps or 1 73
data memories unused. Therefore, you have used 38 program steps or 5 flexible memo
ries, whichever way you want to look at it. You have also used two fixed memories (A
and B). There is lots of room for much longer programs.

Let's get back to the last program. RUN the program this time instead of using
DEBUG. Suppose the phone should ring or the coffee pot starts to boil over when you
have it running. You can press the ON key ON . Press it only once, and the program
will "break." A message appears on the display to let you know where the program se
quence was broken, such as:

C BREAK AT 2)!)
-----1'-t:--

The program was stopped at line 20.

Now you can go answer the phone or turn off the coffee pot. When you come back:

a) If you've been gone less than seven minutes, type CONT, and the pro
gram will continue from the point where the break occurred.

b) If you've been gone longer than seven minutes, the computer automati
cally turns off to save its batteries. When you press ON, the data memo
ries are cleared, but the program is still there. You'll have to RUN the
program from the beginning again, however.

POCKET VIEW OF THE POCKET COMPUTER 21

Summing Up Chapter One

You now have some first-hand knowledge of the TRS-80 Pocket Computer. The fol
lowing table shows commands and statements used in this chapter.

COMMANDS

Command Accepted Remarks Used in
Abbreviation These Modes

CONT c. Restarts a program DEF or
CO. from the point at RUN
CON. which interrupted.

DEBUG D. Starts execution of DEF or
DE. a program line by RUN
DEB. line. Execute each
DEBU. line by pressing.

LIST L. Lists programs line PRO
LI. by line. Press [!]
LIS. to see next line. (1J to see previous

line.

MEM M. Shows remaining Any mode
ME. unused memory.

NEW Clears program and DEF, RUN,
data memories. or PRO

Clears reserve RESERVE
memories.

RUN R. Begins execution DEF or
RU. of a program. RUN

Note: Although it has not been mentioned, some commands and statements �ay be
abbreviated when entered. They will be displayed here in their unabbreviated form,
but accepted abbreviations, shown above, can be used.

22 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

STATEMENTS

Statement Accepted Remarks
Introduced A bbrevia ti on

END E. Indicates end of program.
EN.

FOR F. Starts a FOR-NEXT loop.
FO.

INPUT I. Stops a program for data input.
IN. ? is displayed.
INP.
INPU.

NEXT N. End of FOR-NEXT loop.
NE. Increments the loop variable.
NEX.

PAUSE PA. Specified value is displayed for
PAU. 0.85 seconds.
PAUS.

PRINT P. Specified value is displayed.
PR. Program execution is halted until
PRI. the ENTER key is pressed.
PRIN.

Note: Periods in abbreviations must be included.
Many facts were presented to you in this chapter. Here is a list of the most im-

portant ones.

• Twenty-four characters may be displayed at one time.
• Numeric variables are displayed with ten digits.
• Memory consists of:

26 fixed memories, and
1 78 flexible memories, or
1 ,424 program steps.

• Numeric or string variables (up to seven characters) may be used.

POCKET VIEW OF THE POCKET COMPUTER 23

• BASIC statements and commands are similar to BASICs of larger systems.
• Four modes of operation offer flexible use:

(I) PR Ogram mode - for entering normal programs.
(2) RUN mode - for executing programs.
(3) DEF mode - to execute programs defined by a label.
(4) RESER VE mode - for writing functions for reserved keys.

• A special key, MODE is used to change the operation mode.
• More than one statement may be placed on one program line.
• Some keys have two functions. The SHIFT key is used to access the second func-

tion.
• The ENTER key must be pressed at the end of each program line.
• Error codes are given for incorrect operations.
• The clear key CL clears an error message from the display.
• The Pocket Computer stops operation each time a PRINT statement is executed.
• Programs may be LISTed, one line at a time in the PRO mode.
• A PAUSE statement works like a PRINT statement, except the program pauses

for about a second to display the result and then goes on.
• The NEW command clears all program and data memories when used in the DEF,

RUN, or PRO mode. It clears all reserve memories when used in the RESERVE
mode.

• A built-in 1f key is available with IO-digit accuracy.
• A DEBUG command can be used in the DEF and RUN modes to display the exe

cution of a program, one line at a time.
• The MEM command can be used in any mode to display the amount of unused

memory.

Chapter One Self-Test

I .

2 .

You used a program that calculated the circumference of a circle in this chapter.
Expand that program so that it will also compute the area of the circle.

HINT: A =1fr2
Modify your answer to Problem I so that the results will be displayed as in this
example: C RAD I US = 3) ------

c C I RCUMF . 1 8 . 8 4 9 5 5 5 9 2)
C AREA 2 8 . 2 7 4 3 3 3 8 8) ------

Flash and go on

Print and stop

Print and stop

HINT: Strings can be printed by enclosing characters to be printed in quotation
marks (PRINT ' ' RAD I US =").

3 . Now change the program so that you can also input the height and radius of a cyl
inder. Compute and print the total surface area of the cylinder along with pre
vious information.

24 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

HINT: G---- Top of cylinder I }- Height ..._Side of cylinder
(flattened out)_ _______ __.

I

Circumference of
top and bottom

G .__ Bottom of cylinde'

Answers To Chapter One Self-Test

These solutions are merely one way to solve the problem. Yours may differ. As long as
yours produce the desired results, they may be considered correct.

1 .

2 .

From the program on page 1 7 .
1 JJ F O R R = 1 TO 1 JJ
2JJ B = 2 *1f * R
3 JJ PAUSE R
4JJ P R I NT B
SjJ A =if * R * R
6JJ P R I NT A
7JJ NEXT R
8JJ END

We modified lines 30, 40, and 60.

3JJ PAUSE ' ' RADIUS = ' ' ; R
4JJ PRINT ' ' C I RCUMF . = ' ' ; B

6JJ PRINT ' ' AREA = ' ' ; A

3 . Added lines have been inserted as needed.
1 jJ FOR N = 1 TO 1 jJ ---------
1 3 I NPUT ' ' R= ? ' ' ; R
1 6 I NPUT ' ' H= ? ' ' ; H
2JJ B = 2 *7(* R
3JJ PAUSE ' ' RADIUS = ' ' ; R
4JJ PRINT " C I RCUMF . = " ; B
SJJ A =7'r* R * R
6 JJ PRINT ' ' AREA = ' ' ; A
6 3 S = (2 *A) + (B * H)
6 6 P R I NT ' ' S URF . AREA = ' ' ; S
7JJ NEXT N
8JJ END

or A= *R 2

Optional

This could be any range.

CHAPTER TWO

Applications, Memory Use, and
Definable Mode

There have been many questions asked about the personal use of computers. One of
the most frequently posed questions is, "What do you do with a computer after you get
tired of playing computer games?" Well, computers have many practical functions
too, ranging from keeping a shopping list for your family to running an inventory pro
gram for a business.

Computers serve three functions: recording information, processing information,
and transmitting information. The TRS-80 Pocket Computer adds new dimensions to
these functions. In the past, the size of computers confined their use to a limited num
ber of places. A source of power was needed, and even the desk-top computer was
heavy and cumbersome to carry around. But because the TRS-80 is portable, it is pos
sible to record information at any place and at any time, and to have any previously
recorded information transmitted to you by the computer for immediate use. Like
larger computers, the Pocket Computer has a memory that is nonvolatile, which
means. it can store information permanently. (Information from the Pocket Computer
can also be stored a second way, on cassettes, which we will discuss in a later chapter.)
The portability of the Pocket Computer also enables you to process information imme
diately, for instant review.

In this chapter you will:
• learn about possible uses of the Pocket Computer;
• learn more about how memory is used;
• learn how to use the Pocket Computer in the DEFinable mode; and
• apply some problem solving techniques to practical applications.

26 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Application Examples

Let your imagination run loose as you think of ways to use your Pocket Computer.
We'll plant a few seeds to start your "garden of ideas."

Up-to-the-second stock market analysis

Horse-race handicapping

Shopping list

Shopping price

Letter reader and writer

Short story reader

Speed-reading machine

Cue for speeches

Memo pad

Record job time for accounts

Record medical data, such as
temperature throughout day,
foods eaten, heart rate, blood
pressure, and activity level

Compute food allotment given
present weight, to aid in diet
for weight gain or loss

Time payment schedules

Compound interest

Amortization

Annuities

New games

I 00 most misspelled words

Poker game

Dice games

ESP games

Record people contacted during
day

Record reference tables

Record class activity for later
dump to cassette tape (or printer)

Arithmetic practice

There are many others which will apply to your own needs.

Pocket Computer Memory

One of the things that any self-respecting computer can do is to store information. The
TRS-80 Pocket Computer stores an amazing amount of information for its tiny size.
And when information is stored, it doesn't go away when the computer is turned off.
The information you store stays in memory until the day that you clear or replace it.
To use this memory power effectively, you will need to understand how data and pro
gram steps compete for memory space.

APPLICATIONS, MEMORY USE, AND DEFINABLE MODE 27

It is useful to think of the TRS-80 memory as a long sequence of 1 ,632 boxes.
Each box contains 8 bits of information. In more technical language, each box will
hold an 8-bit byte.

t....____.t....___t.___t�+�---1.....L 8 bits LJ
8 bits, combined in a group, make one byte

One memory box

Program steps are stored in the memory boxes starting at one end, while data items
(consisting of numbers and words) are stored starting at the other end.

Data from
this end

When data and program meet in the middle, the memory is full .

Program from
this end

More sp�ce is needed to store an item of data than to store a program step. One
memory, consisting of 8 boxes, is required to store one data item .

.,__-----------ti }-One memory � (8 boxes)

A single box is required to store one program step.

28 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

1424 BYTES OF
F LEX I B LE M E MO RY FOR

DATA OR P R OG RAM --�

208 BYTES
OF F IX E D

DATA
F$,A$(6) M E MO RY * !?*

•
• E$,A LIAS • DOG A$(5)

I N
26 DATA

M E MO R I ES D,A LIAS
2.7E99 A(4)

•
•
• •

•
•

WITH C$,A LIAS •
NO ABCDE A$(3)

P R OG RAM
STEPS

A LLOWED

STORAGE M E MO RY 2

FOR 1 DATA A LIAS B,

ITEM (WO R D B$,A(2),

OR N U M B E R) A$(2) I
H

--- - --- ----------
------ - --

------ --- --- 20 M E MO RY 1

A LIAS A,A$, -=-=-=ENTE R=-=-=

A(1),A$(1) x
-=-=-::: INPUT=-=-=-

DATA M E M O R I E S P ROGRAM STEPS
Memory Map

13
12
11
10
9
8 8
7 PROG RA M
6
5

STEPS

4
= ON E
DATA

3 M E MO RY
2
1

APPLICATIONS, MEMORY USE, AND DEFINABLE MODE 29

'fhe first 26 data memories (208 boxes) are used only for data storage and are
not available for program storage. This leaves 1 ;424 of the original 1 ,632 boxes for
storage of other data and program steps. The longest possible program could therefore
consist of 1 ,424 program steps. Since each data item occupies 8 boxes, the 1 ,424 boxes
could be.used to store 1 78 data items (of course there would then be no room for pro
gram steps).

Data memories have names. In fact, each data memory has many names. The
name, or names, you use will depend on whether the data item is a number or a word,
and on your particular preference.

Example:
If the data item in memory number 1 is a

number, then the following names can refer
to it:

A, or A(l)

If the data item in memory number 1 is a
string of symbols, then the following names
can refer to it:

A$, or A$(1)

String variables have a $ sign, number variables do not.

The data in memory number 2 is referred to
by the names:

B, or A(2), or B$, or A$(2)

The data in memory 3 is referred to by
the names:

C, or A(3), C$, or A$(3)

Other memories follow the same pattern.

This is a very versatile naming system. It allows you to use the alphabetic order
A, B, C, . . . Z for number variables; or A$, B$, C$, . . . Z$ for string variables. If the
occasion demands, you can use subscripted variables such as A (l), A(2), A(3), . . .
A(204), or A$(1) , A$(2), A$(3), . . . A$(204).

To see how memory is filled as you enter a program in the PRO mode, you can
look at the unused memory size by the MEM command. Go through the following pro
gram on your Pocket Computer as we check MEM after each entry. Do the same on
your computer.

The program that we'll use will compute the volume of a cylinder, given the
height and radius of the cylinder.

Equation: v = r2h where r = radius
h = height
v = volume

30 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Program:
1 � I NPUT ' ' RADIUS= ' ' ; R
2 � I N PUT ' ' HE I GHT= ' ' ; H
3 � V= * R 2 * H
4 � PRINT ' ' VOLUME= ' ' ; V
5 � GOTO 1 �-

Notice that INPUT statements can contain strings. One
data memory can hold a maximum of seven characters.

Also notice line 30, the volume equation.

The TRS-80 Pocket Computer has a key for raising a
value to a power. The I\ key is in the top row of keys and
must be "shifted."

/\

Press SHIFT, then I VI
Before you enter any of the program, access the PR Ogram mode and type

NEW. Then type MEM.

Type this much.

Press ENTER.

Type MEM.

c 1 4 2 4 STEPS 1 7 8MEMORIES �

C 1 � : I NP UT) ----

� 1 4 2 �STEPS 1 7 7MEMORIES �

All memories
are clear.

-------------------------------------� -- - -��-�- - r.··-

APPLICATIONS, MEMORY USE, AND DEFINABLE MODE 31

You have used four program steps:

1 2 3 4 r1i'n __.I___,
1 O:INPUT ENTER

Four program steps equal a part of one memory. Therefore, there are 1 ,420 steps left,
or 1 77 memories.

Type:

Press ENTER.

Type MEM.

c 1 � I NPiJT ' ') ----

c 1 � : I NPUT ' ') ----

(1 4 1 9STEPS 1 7 7 MEMORI ES �
Now you've used five program steps - that's still only one memory.

Type:

Press ENTER.

Type MEM.

C 1 � I NPUT ' ' R)___ __ _

C 1 � :INPUT ' ' R)___ __ _

c 1 4 1 8STEPS 1 7 7 MEMORI E S �

32 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Now six steps have been used - still one memory. This is how it's stored so far:

1 2 3 45 6 fi'r1--i I r-1---i
1 O:INPUT "R ENTER

Let's go on and finish the first line.
Type:

Press ENTER.

Type MEM.

(1 µ I NPUT ' ' RADI US= ' ' ; R)

(1 µ : I NPUT ' ' RADI US= ' ' ; R)

(1 4 µ9STEPS 1 7 6MEMORIES �
This is the result from the first line of the program:

1 2 3 4-1 4 1 5 �I� .---1 �' -----.I r-1---,
lO:INPUT "RADIUS=";R ENTER

1 424 original memories
- 1 5 steps used

1 409 unused program steps
(or 1 7 6 complete memories left since

the 1 5 steps only take 2 memories
at 8 steps per memory)

APPLICATIONS, MEMORY USE, AND DEFINABLE MODE 33

Now enter the second line.

Type:

Press ENTER.

Type MEM .

(2 0 I NPUT ' ' HE I GHT= ' ' ; H)

c 2 0 : INPUT ' ' HE I GHT= ' ' ; H)

� 1 3 9 4 STEPS 1 7 4MEMORI E S �
Stored as 20: INPUT"HEIGHT=";H ENTER.

1 5 more steps
1 5 + 1 5 = 30 steps so far

1 424 - 30 = 1 394 steps unused

30 + 8 = 3 full memories and
a part of the fourth; therefore
1 74 complete memories
unused

Finish entering the program, then check the amount of memories unused.

(1 3 6 1 STEPS 1 7 0MEMORIES � 1 424 originally
- 1 36 1 left

63 program steps
used

63 + 8 = 7 full memories
used and a part of the
eighth memory; therefore
1 70 full memories
unused

34 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Step

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34

Data Step

1 0 3 5
36

INPUT 37
" 38
R 39
A 40
D 41
I 42
u 43
s 44
= 45
" 46
, 47
R 48
ENTER 49
20 50

5 1
INPUT 52
" 53
H 54
E 55
I � 56
G 57
H 58
T 59
= 60
" 61
, 62
H 63
ENTER
30

v
=

Data

f(
*

R
A
2
*

H
ENTER
40

PRINT
"

v
0
L
u
M
E
=
"

,
v Fixed Memories Used
ENTER
50 Memory

Number
GOTO
1 8
0 1 8
ENTER 22

Memory Use for the 63 Program Steps
in the Cylinder Volume Program

Variable
Stored

H
R
v

You can see that each BASIC statement such as INPUT, PRINT, and GOTO
occupies only one program step. Each time the ENTER key is pressed at the end of a
line, a program step is used. A line number occupies one program step, and the colon
following the line number occupies a separate step. Otherwise, each keyboard charac
ter requires its own program step whether it is a Jetter, number, or arithmetic opera
tion. Variables are stored in fixed memory. Multiple statements in a line save memory,
but sacrifice the clarity of your program.

Now that you have a better understanding of memory use, let's move on to an
other Pocket Computer operating mode.

The DEFinable Mode

APPLICATIONS, MEMORY USE, AND DEFINABLE MODE 35

The DEF mode is used in place of the RUN mode when your programs have been
defined by a label. It is an execution mode, like the RUN mode.

The lower two rows of gray keys are definable keys.

IENTERI

---------- These are definable / \
But not the
ENTER key

When more than one program is in memory at the same time, it is convenient to label
each program with one of the definable keys, Then you can execute any one of the pro
grams by pressing the SHIFT key, followed by the defined key that is used to label the
program. It is much easier to press the appropriate defined key than to try to remem
ber the beginning line number of each program and to type in RUN, line number,
ENTER.

Recalling equations that you used in earlier programs and using two new ones,
let's set up three programs to solve them.

C = 17' R2 Area of circle (top or bottom of
a cylinder)

A = 2 1fRH

(9

or

2 7TR (R + H)

Surface area of side of cylinder

Top of cylinder

Side of cylinder (flattened out)

Bottom of cylinder

Volume of cylinder

Total surface area of
cylinder

36 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

We will use three separate programs to compute and print the surface area and
volume of a cylinder given the radius and height.

First program - input the radius and height
Second program - compute and print the surface area
Third program - compute and print the volume

The Cylinder Program
First program
with "=" label
inputs R and H

1 i.J ' ' = ' ' : I N PUT ' ' RADIUS = ' ' ; R
2 1.J I NPUT ' ' HE I GHT= ' ' ; H
3 1.J END

41.J ' ' S ' ' : A= 2 * if * R
5 1.J B=R+H
6 1.J S=A*B

Second program
with "S" as label
computes surface
area

7 1.J PRINT ' ' R= ' ' ; R ; ' ' H= ' ' ; H
81.J P R I NT ' ' SURFACE AREA= ' ' ; S
9 1.JEND

Third program
with "V" as label
computes volume

1 1.J i.J " V " : V= ?f<R 2 * H
1 1 1.J P R I NT ' ' R= ' ' ; R ; ' ' H= ' ' ; H
1 2 1.J P R I NT ' ' VOLUME= ' ' ; V
1 3 1.J END

In the first program, the radius and height are input. The program is executed in
the DEF mode and establishes the values for the radius and height of the cylinder.

Press the MODE key until the DEF mode is found.
Press SHIFT, = To access the first program labeled "=" ·

Press 2, ENTER

C RAD I US=) -----

C HEIGHT=) ----

PRESS 3, ENTER

C >)_ The program has
�������������-J- ended

Now, you may select either program "S" if you want the surface area of the cyl
inder or program "V" if you w.ant the volume of the cylinder.

a) To select the surface area program:
Press SHIFT, S to access the second program labeled "S."

C R=2 . H= 3 .) ----
Reminding you of
the initial values

. ,· '

b)

APPLICATIONS, MEMORY USE, AND DEFINABLE MODE 37

Press ENTER.

c SURFACE AREA= 6 2 . 8 3 1 8 5 3 0 5)
Press ENTER.

(__
>

__
_) End of program "S"

To select the volume program:
Press SHIFT, V To access the third program labeled "V."

c R= 2 . H= 3 .)
Press· ENTER.

c VOLUME= 3 7 . 6 9 9 1 1 1B 4)
Press ENTER.

c >) End of program "V"

To access the first program again, so you can input new values for r and h, press
SHIFT, G , then input new values as requested. Use programs "=", "S", and "V" to
complete the exercises in Problem 1 . (Answers at end of chapter.)

Inputs Surface Area Volume

R H

1 5 1 0

1 4.5 1 1 .5

1 4 1 2

1 3 .5 1 2. 5

1 3 1 3

1 2.5 1 3 .5

1 2 1 4

38 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

The TRS-80 has a statement called AREAD, which will automatically store a
numeric value or character in a specified variable that has been displayed before the
start of program execution. In our last example, you used a program labeled "="
which allowed you to input the values for radius and height. Let's replace program
"=;o" with AREAD statements to see how they work.

In the PRO mode, replace the first three lines of the previous program. Leave
programs "S" and "V" just as they are.

Replace lines 1 0, 20, and 30 only.

1)? ' ' A ' ' : AREAD R
2)? ' ' B ' ' : AREAD H
3)? END

Now go to the DEF mode and press in succession:
5, SHIFT, A

Press ENTER.

(
Press SHIFT, V.

Press ENTER.

then 6, SHIFT, B
then SHIFT, S

c R= 5 . H=6 .)

(

(

SURFACE AREA= 3 4 5 . 5 7 5 1 9 1 9�

R=5 . H=6 .)
VOLUME= 4 7 1 . 2 3 8 8 9 8 �

Enters 5 for R
Enters 6 for H
Runs program "S"

Runs program "V"

The AREAD statement allows for a neat and quick way to enter variables.
Suppose you want to leave the radius at 5 and explore various values for the

height. Just continue as before - but ignore the AREAD R statement, which is Ia-.
beled A.

In the DEF mode:
Press in succession:

7, SHIFT, B. --------- Changes H to 7

APPLICATIONS, MEMORY USE, AND DEFINABLE MODE 39

Press SHIFT, S.

(R=5 . H= 7 .) -------
Press ENTER.

c SURFACE AREA= 3 7 6 . 9 9 1 1 1 8 5�
Press SHIFT, V.

C R=5 . H= 7 .) --�-

Press ENTER.

C VOLUME= 5 4 9 . 7 7 8 7 1 4 4) ------

See H was changed

Press 1 0, SHIFT, B . ..,_ ___________ Changes H to I 0
Press SHIFT, S.

C R= 5 . H= 1 0 .) -----
Press ENTER.

c SURFACE AREA= 4 7 1 . 2 3 8 8 9 8 1�
Press SHIFT, V.

(R=5 . H= 1 0 .) ----
Press ENTER.

C VOLUME= 7 8 5 . 3 9 8 1 6 3 4) ----

40 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Continue on in this manner until you have used as many different heights as you
desire. You could go through a similar procedure to change only the radius.

Using Arrays

Note that when using a program with an AREAD state
ment, a value must be displayed before the labeled line
with the AREAD statement is executed.

1 5, SHIFT, A in example

A more versatile program can be written by using an array to hold a series of results
produced by a program such as the previous one.

Problem to be solved :

Compute the surface area of ten cylinders having a given
radius but varying heights. Input the radius, beginning
height, and the amount (increment) that the height is to
change each time. Store the results in an array. After all
areas have been computed, print them.

In planning a solution to such a problem, state the necessary actions in general
statements.

1) Recording: Input initial values
2) Processing: Make necessary computations
3) Transmitting: Print results

You must also plan how you are going to use memory space so that no conflict
arises between variables or between space for variables and space for program steps.

1) You need ten memories for the array that will hold the computed surface
areas. You might use A(1) through A(1 0) .

2) The FOR-NEXT loop variable to be used in computing and storing the
surface areas will occupy one memory. N might be used.

3) You wil l need three variables for the radius, original height, and the in
crement to the height. Use A(20), A(1 9) , and A(1 8) . A(1 7) is used for
the original height also since you will be changing A(1 9) as the different
surface areas are computed.

4) The equation used to solve the surface area is long and is therefore bro
ken into two parts:

Z = R + H
Y = 2 *1'f * R

Surface area = Z * Y
Z and Y take two more memories.

APPLICATIONS, MEMORY USE, AND DEFINABLE MODE 41

In all, it looks like you will use 1 7 memories. These will all fit into the fixed
memory space. Therefore, they will not interfere with the memory used for program
steps.

Memory Variable Remarks
Number Stored

1 A(l) - The first ten hold -
the computed areas

2 A(2)

3 A(3)

4 A(4)

5 A(5)

6 A(6)

7 A(7)

8 A(8)

9 A(9)

I O A(l O) -

1 1

1 2

1 3

1 4 N - FOR-NEXT loop variable

1 5

1 6

1 7 A(l 7) - Original height

1 8 A(l 8) - Height increment

1 9 A(1 9) - Changing height

20 A(20) ___.. Radius

-;.,

42 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Memory Variable Remarks
Number Stored

2 1

22

23

24

25 y � 2 * ff * Radius

26 z --- Radius + height

Fixed Memories Used for Surface Area Program

It is a good idea for you to make a table of memories used for your programs.
Then when you wish, you can examine the memories to see what values are there; if
there are errors in a program, this is a great aid to find where they may be occurring.
We will cover error codes, editing, and debugging programs in Chapter 3 .

To conform with the way the program has been planned, i t would be convenient
for you to separate the program into three parts and label each part. The DEF mode
would then be used to execute the program. Here is a three-part program for surface
area.

1 0 ' ' = ' ' : I NPUT ' ' RADIUS = ' ' ; A (2 0)

2 0 I NPUT ' ' F I RST HEI GHT= ' ' ; A (1 9)

3 0 I N PUT ' ' I NC FOR H= ' ' ; A (1 8)

4 0 A (1 7) =A (1 9)

5 0 END

1 0 0 ' ' S ' ' ; FOR N= 1 TO 1 0

1 1 0 Z=A (2 0) +A (1 9)

1 2 0 Y = 2 * 1f*A (2 0)

1 3 0 A (N) =Z * Y

1 4 0 A (1 9) =A (1 9) +A (1 8)

1 5 0 NEXT N

1 6 0 BEEP (3)

1 7 0 END

2 0 0 ' ' L ' ' : A (1 9) =A (1 7)

2 1 0 FOR N= 1 TO 1 0

2 2 0 PRINT A (1 9) , A (N)

2 3 0 A (1 9) =A (1 9) +A (1 8) -----------

2 4 0 NEXT N

2 5 0 END

radius + height
2 7(R
2 1rR(R + H)
new height

set height back to
original value

next height

., .

APPLICATIONS, MEMORY USE, AND DEFINABLE MODE 43

Notice that each part of the program has a separate label. Enter each part in the
PRO mode. Execution will be performed in the DEF mode. Look over the program
carefully and see if you notice anything new. How about BEEP (3) - a surprise that
we won't give away yet. You'll probably figure out what BEEP will do, but no matter.
We still won't tell you yet.

All right, you're now ready to RUN. Get into the DEF mode and let's go.

You Do
This

SHIFT, G
5, ENTER

1 , 0, ENTER

3, ENTER

SHIFT, S

Computer
Display

Remarks

) When in DEF mode (> DEF

c RADIUS= _ ____)
(FIRST HEIGHT= _ ______)
(IN C FOR HEIGHT=_ ______)
(>) End of "=" program

c RUN) Computati�ns being
--------------- made

Wait until --------------- BEEP! BEEP! BEEP!

(..._> __________
___) End of "S" program

All calculations are finished.
The 3 BEEPS were caused by
1 6 0 BEEP (3) . It gives you an
audible indication that the program
has finished its chore.

44 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Now let's search for the results in program "L".

SHIFT, L c
-�����-1 �-·�

4-1_
1
_
. 2
_
3
_
8
_
8
_
9
_
8
_
1 __ �

ENTER

ENTER

ENTER

ENTER

ENTER

ENTER

ENTER

ENTER

ENTER

ENTER

c
-�����-1-3_

.
�
56
_
5
_
.
_
4
_
8
_
6
_
6
_
7
_
7
_
7 __ �

(1 6 . 6 5 9 . 7 3 4 4 5 7 3)

c 1 9 . 7 5 3 . 98 2 2 3 7)

c 2 2 . 84 8 . 2 3 �� 1 66 �

(25 . 94 2 . 4 7 7 7 96 2)

C 28 . 1 0 36 . 7 2 5 5 7 6 .) -------
�
-�����-3

_
1
_
.
�1-1 3

_
�
_
·
_
9
_
1
_3_3_

5
_
5

__
�

(
,�����-3-4

_
.
�
1-2 2_

5
_
.
_
2
_
2
_
1
_
1
_
3
_
5
_...
�

�
---�����

3_
1
_
.
�
1 3_
1
_
9
_
.
_
4
_
6
_
8
_
9
_
1
_
5
--
�

(_> ___)

Height followed by
surface area

End of "L" program

Isn't that neat? Look at all those numbers - that kind of accuracy is ridiculous
for most measurements. See if you can be more reasonable. Suppose each measure
ment, R and H, had been made to the nearest tenth of a unit. Then you could expect
the answer to be no more accurate than to the nearest tenth. You can fotce the com
puter to print the answer to tenths (or other places) with the USING statement.

The USING statement is an instruction to specify a
PRINT or PAUSE display format for numerical data.

APPLICATIONS, MEMORY USE, AND DEFINABLE MODE 45

To demonstrate this st.atement, go back to the PRO mode and type in this line:

2 1 5 US ING ' • #### . # ' ' ----

/ \
4 digits tenths

place

This specifies the
print format for line 220

Now go to the DEF mode and do it all over again. Input a radius of 5, original
height of 10, and an increment of 3. Then, on to program "S" to compute the surface
areas. When the computer beeps 3 times, type SHIFT L to see the following results.

Press See this result

SHIFT, L c 1 p . p 4 7 1 . 2) Height, then area

ENTER c 1 3 . p 56 5 . 4)
ENTER (1 6 . p 6 59 . 7)
ENTER (1 9 . p 7 5 3 . 9)
ENTER c 2 2 . p 84 8 . 2)
ENTER (2 5 . p 94 2 . 4)
ENTER (2 8 . p 1 0 3 6 . 7)
ENTER c 3 1 . p 1 1 3p . 9)
ENTER (3 4 . p 1 2 2 5 . 2)
ENTER (3 7 . p 1 3 1 9 . 4)

46 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Use the same program to complete the table in Problem 2. Use a radius of 2.35,
original height of 5 .50, with increments of 0.25. Change line 2 1 5 to print the surface
areas to the nearest hundredth. (Answer at end of chapter.)

Try # Height Surface Area

1

2

3

4

5

6

7

8

9

10

Summing Up Chapter Two

Three new Pocket Computer BASIC statements were introduced in this chapter.

Statement Accepted Remarks
Abbreviations

AREAD X A. The contents displayed at the
AR. start of a defined program are
ARE. automatically read into the
AREA. specified variable.

BEEP(X) B. A short tone (beep) is generated
BE. as many times as specified by
BEE. value specified (X) .

USING U. Designates the format to be
US. used for numerical data in a
USI. PRINT or PAUSE statement.
USIN.

APPLICATIONS, MEMORY USE, AND DEFINABLE MODE 47

Other material presented includes:

• Information on the Pocket Computer's Memory:
One memory box holds 8 bits of data.
Eight memory boxes are used for each alphanumeric character.

Names that may be used for memories:
A,B,C,D . z
A$,B$,C$,D$. Z$
A(l) ,A(2),A(3) . A(204)
A$(1) ,A$(2) . A$(204)

• Prompt messages can be used in INPUT statements:

c I NPUT ' ' NAME=? ' ' ; A$)

• How memory is used as you enter a program:

Program steps are stored at the opposite end of memory from variables with
eight program steps filling one memory location.

One BASIC line may use several program steps.

Variable values may be assigned to memory locations at the opposite end of
memory.

Care should be taken in assigning variables so that memory used for variables
does not overlap that used for program.

• Definable mode - The lower two rows of keys can be defined to execute
subprograms that have been labeled by shifting a definable key.

• Arrays are stored in memory as subscripted variables such as:

A(l), A(2), A(3) , A(204) for numeric variables,
or A$(!) , A$(2), A$(3), A$(204) for string variables.

A(I) or A$(1) occupy fixed memory # 1 ,
A(2) or A$(2) occupy fixed memory #2,
etc.

If more than one array is to be used in a program, they must occupy different
memory locations as denoted by their subscripts.

Example: A(l) through A(I O) for one array,
A(l l) through A(20) for another array,
etc.

" J 'l

48 PROBLEM-SOL YING ON THE TRS-80 POCKET COMPUTER

Chapter Two Self-Test

I. A cylinder is to have a volume of 3,000 cubic centimeters. Write a program that
will let you input the radius and compute the height. Complete the chart for the
inputs shown.

HINT: V = 1(R2H What does H equal if you know R and V?

Volume Radius Height

R Height

1 1

1 0
'

9

2 . Enlarge your program for Problem I to calculate the total surface area of the cyl
inder after the radius has been input and the height calculated.

HINT: S = 2 ftR2 + 2 1IRH

Complete the chart.

R Height

9

8.5

8

7 .5

7

Surface Area

3 . A soup company wants to package soup in cans that will hold 3 ,000 cubic centi
meters. They send an order to a can manufacturer for cans that will hold that
amount, but they stipulate that the can must use the least amount of material pos
sible. Several radii were investigated to find which radius-height combination
would give the correct volume and still have the smallest surface area. Write a

program that they might have used. Use your program and search until you find
the best radius to the nearest .00 1 centimeter.

HINT: Use your program for Problem 2. Also study the results of that problem
for a clue as to where to start looking.

Best radius =------

Best height = _____ _

APPLICATIONS, MEMORY USE, AND DEFINABLE MODE 49

Smallest surface area = _____ _

Ratio R/H = _____ _

Answers to Chapter Two Self-Test

I .

Program

1 0 I NPUT ' ' RADIUS= ' ' ; R
2 0 H = ' 3 0 0 0 / (* R * R)
3 0 PRINT R , H
4 0 GOTO 1 0

2.

Program

1 0 I NPUT ' ' RADIUS= ' ' ; R
2 0 H = 3 0 0 0 / * R * R)
3 0 PRINT R , H
4 0 S = 2 * * R * (R+H)
50 PRINT S
6 0 GOTO 1 0

3 . We first tried these:

R

8 .3
8 .2
8 . 1
8
7 .9
7 .8
7 .7

R Height

1 1 7 .89 1980649
1 0 9.549296586
9 1 1 . 78925504

r Height

9 1 1 .78925504
8 .5 1 3 . 2 1 70 1 95
8 14.92077 59 1
7 .5 1 6 .97652726
7 1 9 .48836038

Height Surface Area

1 3.861 6587 1 1 55 .740202
14.20 1 8093'2 1 1 54. 1 88697
14.55463586 1 1 52.980529
14.92077591 1 1 52. 1 23859
1 5 .30090784 1 1 5 1 .627266
1 5 .69575376 1 1 5 1 .499763
1 6. l 0608296 1 1 5 1 .750836

Surface Area

1 1 75.604676
1 1 59 .842492
1 1 52 . 1 23859
1 1 53 .429 1 73
1 1 65.01 8937

50 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Then we tried these:

R Height

7.84 1 5 .53600 1 58
7 .83 1 5 .5757 1 0 1 9
7 .82 1 5 .6 1 557 1 24
7 .8 1 1 5 .6555855
7 .8 1 5 .69575376

Last of all these:

R Height

7 .821 1 5 .6 1 1 57825
7.82 1 5 .6 1 5 57 1 24
7.8 1 9 1 5 .61 956576
7 .8 1 8 1 5 .62356 1 8 1
7 .8 1 7 1 5 .62755939
7.8 1 6 1 5 .63 1 5585 1
7.8 1 5 1 5 .635559 1 7

Best radius = 7 .8 1 6

Best height = 1 5 .63 1 5585 1

Smallest surface area = 1 1 5 1 .49497 6

Ratio R/H = 0.5000 14 1 2 1 8 or 2R H

Surface Area

1 1 5 1 .505877
1 1 5 1 .498705
1 1 5 1 .495288
1 1 5 1 .495638
1 1 5 1 .499763

Surface Area

1 1 5 1 .49546 1
1 1 5 1 .495288
1 1 5 1 .495 1 54
1 1 5 1 .495057
1 1 5 1 .494997
1 1 5 1 .494976
1 1 5 1 .494992

Answers to Problems in Chapter

1 . Cylinder Exercises

Inputs Surface Area Volume

R H

1 5 1 0 2356. 1 9449 7068 .58347
1 4.5 1 1 .5 2368.76086 1 7595.978337
14 12 2287 .079452 7389.025921
1 3 .5 1 2.5 2205 .398043 7 1 56.940764
1 3 1 3 2 1 23.7 1 6634 6902.07906
1 2.5 1 3 .5 2042.035225 6626. 797003
1 2 1 4 1 960.3538 1 6 6333 .450789

APPLICATIONS, MEMORY USE, AND DEFINABLE MODE SI

2. Surface Area for Cylinders of Radius 2.35

Try # Height Surface Area

1 5 .50 1 1 5 .90
2 5 .75 1 1 9.60
3 6.00 1 23.29
4 6.25 1 26.98
5 6.50 1 30.67
6 6.75 1 34.36
7 7.00 1 38 .05
8 7 .25 14 1 .74
9 7.50 145 .44
10 7 .75 149. 1 3

CHAPTER THREE

Error Codes, Editing, and Cassette Use

The TRS-80 Pocket Computer performs a wide variety of operations and functions,
but there are limits to what any computer can do. The Pocket Computer has ways to
let you know when you are asking it to execute a statement or command that it cannot
perform. There are a great many ways that such situations can arise. You have proba
bly already found a few of them.

In this chapter you will learn:

• what the Pocket Computer's six error codes mean;
• how to use editing features to insert and delete segments of program lines;
• how to save and load programs via cassette tape;
• how to load a program from tape without disturbing other programs that

are already in memory;
• how to generate random numbers; and
• how to load and use a random number-generating subroutine in other pro

grams.

We'll use a solution to the following problem to cause some error codes to ap
pear. Then we'll see if we can correct them with some of the Pocket Computer's edit
ing capabilities.

The Problem - CLIP CLOCK

The ComputerTown Engine Company has a large, round, 24-hour clock on the wall
which everyone uses to synchronize their watches before important events. The latest
event led to this problem: It was almost midnight, and the stalwart crew loaded up a
long program to run while they rested. Big George observed that the program they
were about to run consisted of a single subroutine that was called exactly 1 ,00 1 times.
Each call of the subroutine took exactly one hour. The obvious question is, "What time
will the program finish, as measured by the 24-hour clock?" Since this problem may
recur, a program is needed that inputs the number of times the subroutine is called,
and then prints out the time of day that the program will finish. (You should know the
truth about the ComputerTown Engine Company - they drink coffee, play tennis,

ERROR CODES, EDITING, AND CASSETIE USE 53

talk, and generally carry on until late in the evening.) The ComputerTown Engine
Company always start running their programs at midnight. Before looking at our
demonstration program, see if you can conjure up a program of your own. Write it in
the box provided.

Your Program

Problem 1 Subroutine
(answer at end of chapter)

Now let's take a look at the program that Big George came up with. These thoughts
ran through his mind. "The obvious thing to do is start subtracting 24 from 1 ,00 1 ,
since the clock will be back where i t started each time i t performed 2 4 subroutine calls.
I 'l l write a program to keep subtracting 24 and test each time to see if fewer than 24
hours remain. When that happens, I'll know when the job is over."

Big George's Solution
1 � T= 1 �� 1
2 � I F T < 2 4 THEN P R I NT T : END
W T=T- 2 4
4 � GOTO 1 5

Well, as you probably realize from looking at the program, Big George is not the
best programmer in the world. Enter his program in your Pocket Computer and see
what happens when you try to run it. Here's what happened to Big George when he
tried.

(2, ·)
""'-------- Error code 2

54 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

George held down the [II key to see what was wrong.

C 4 � : GOTO 1 5) ---4--1 --

�-- Something's wrong about the
line number 1 5

Error Code 2 indicates a line error. I t occurs when you
try to GOTO, GOSUB, RUN, DEBUG, or LIST a state
ment that doesn't exist.

Big George pressed the MODE key until he was in the PROgram mode. Then he
tried to list line 1 5 .

C L I S T 1 5_) '"------

(2 · · · · · · · · · · ·)
L Since we get error code 2 again,

we know that line 1 5 must not exist.

Big George really meant to say: 4� GOTO 2 � . He didn't have to retype all of line
40 to correct it. You can use the Pocket Computer's editing ability, just as he did:

Clear the display with the CL key.

Type (L"T , ,_ PR� Mu•t be i"
"'--------------""' PRO mode

Then press ENTER.

C 4 � : GOTO 1 5) ----

Press the�key.

c 4� GOTO 1 5) \.
___ Cursor blinks over the letter

G of GOTO

ERROR CODES, EDITING, AND CASSETTE USE 55

Press thejBkey again.

c 4 � GOTO 1 5 � L Blinking cmso' movos ovcr th<
1 of 1 5 . You want to change that.

The number 1 5 must be changed to 20. Therefore, press the 2 key.

Now press the zero key 0.

4 � GOTO 2 5

Blinking cursor moves over the 5 ---- 2 replaces the 1

�
'---

4

-

�

-

G

_

O
_
T
_
0

--+

2

-

�

�

�/___ 20 has replaced the 1 5

Press the ENTER key to complete the entry of your new line 40.

C 4 � : GOTO 2 �) ----------.....-\ ---c_ Colon indicates the new line
has been entered

Big George goes back to the RUN mode and tries again. After the program runs
awhile, it suddenly stops again.

(__
2 � :_\ __ l . . · _· . . _· . . . _ . .)

"""'------- Error code 1

56 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

He presses the�key.

C 2 � : I F T<THEN PRINT T ;)
------'/II----

Error code I indicates one of several things:
a) A grammatical (or syntax) error

Blinking cursor over the
P in PRINT

b) Operational error (division by zero, absolute
value of result is greater than I X 1 0 100 etc.)

c) Error in memory specification (numerical value
assigned to a string variable, or vice versa)

George's error appears to be a grammatical error since it doesn't fit b or c. There
must be something wrong with the syntax of THEN PRINT. By closely reading your
TRS-80 Pocket Computer Manual (page 6 1) , you will probably come to the conclu
sion that THEN has the same function in an IF statement as GOTO. In other words, if
you use IF-THEN, the computer expects a line number to follow the word THEN.
Page 60 of the manual in di ca tes that George should use IF-PRINT, not the word
THEN.

Big George should delete the word THEN in line 20. He goes to the PROgram
mode and LISTs line 20.

c 2 � : I F T < 2 4 THEN PRINT T)
He presses � once,

c 2 � I F T < 2 4THEN PRINT T)
� again,

c 2 � I F T < 2 4 THEN P R I NT T)
{fil several more times until the blinking

cursor is over the letter T of THEN.

c 2� I F T < 2 4.THEN PRINT T)

ERROR CODES, EDITING, AND CASSETTE USE 57

Now he presses SHIFT, DEL DEL for delete

t @]__ ____________ SHIFT to get DEL instead
. of @)

2 iJ I F T < 2 4 PIUNT T ; END

- MAGIC! The whole word THEN
was deleted

By pressing ENTER the altered line will be entered.

c 2 iJ ; I F T < 2 4 P R I NT T : END)
Big George RUNS again!
The program runs, George waits. Finally . . .

c 2 Y! : 1 "
···· ····· · ·)
"""'

OOPS! He did it again

He holds down the�key again to see what is wrong this time.

c 2iJ I F T < 2 4 PR I NT TJEND)
I

Another grammar error?

Look at the line carefully. Big George meant line 20 to be a multiple statement
line consisting of the two statements:

I F T < 2 4 PRINT T

and
END

58 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

He can't find anything wrong with either part, so it must be the way that he
joined them. Notice what he used to separate the two statements - a semicolon. The
semicolon is used to separate two variables to be printed. Th� computer thinks he
wants to print T and END. But variables can only be a single letter or a single letter
followed by a subscript or $ sign - not three letters. Therefore, the computer is con
fused and gives a syntax, or grammar, error message. That semicolon should be
changed to a colon.

Big George goes to the PROgram mode once again. How many times must he
press the [E key (after LISTing line 20) to get the blinking cursor over the semi
colon? We counted eight times as we watch over his shoulder. Then he presses SHIFT,
I to change it to a colon.

(2)) I F T < 2 4 P R I NT T : END)
He then presses ENTER.

(2)) : I F T < 2 4 P R I NT T · : END)
Big George runs once more: He waits awhile, then

�'�����������-�---1--7. Success maybe?

But how does he know if he's right? Little Fred comes to the rescue. He leaves
the computer in the RUN mode and types:

C T= 1)))) 1) -----

Then he presses ENTER and types

C T-INT (T/ 2 4) * 2 4) ----

and presses ENTER.

(___ '�
Same result

ERROR CODES, EDITING, AND CASSETTE USE 59

What does Little Fred know that Big George doesn't? His result sure came a lot faster
than Big George's.

Well, Little Fred remembered what he learned in school. When you divide one
integer by another, you get a quotient (Q) and a remainder (R).

Divisor --.. 24
41 ...--- Quotient

fiOOi
96 ...,.___ Dividend

41
� / Remainder

1 7

Little Fred reasons that i f he subtracted 24
times the integer part (4 1) of the quotient; from the
original number of subroutine calls, the difference
would be the remainder. The remainder would be
the time the clock would show after it makes all of
the complete revolutions.

----- The hour hand wi l l
be on 1 7 when 1001

, subroutines have been
executed,

By the Pocket
Computer

l
4 1 . 7 (J 8 3 3 3 3 3)

41 complete revolutions of
the clock. During that time
41 X 24 (or 984) calls were
made to the subroutine.

1 00 1 /24 = 41 .70833333

4 1 = INT(l OO l /24)

INT(l OO l /24) *24 = 984

1 00 1 -984 = 1 7 remainder

Even though Big George didn't do a very good job on his original program, he
learned something about error codes and the editing features of his Pocket Computer.

60 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Other error codes that Big George, and you, should learn are:

• Error code 3 is called a level error.
a) It occurs when you exceed 4 levels ofa GOSUB or FOR-NEXT

statement.

FOR A = .1 TO 2
FOR B = 1 TO 1 0
FOR C = 3 T0 5
FOR D = 1 T0 7 �

NO J - FOR E = 5 T0 6 � Sth 4th
NO - NEXT E -

NEXT D
NEXT C

NEXT B
NEXT A

3rd 2nd 1 st

b) It occurs when you try to execute a RETURN without a previous
GOSUB.

c) It occurs when you try to execute a NEXT without a previous
FOR.

• Error code 4 indicates that you have insufficient memory for either a
program step, reserve memory, or a dimensioned memory.

• Error code 5 indicates a control error when using cassette tape (verify
error, check sum error, etc.) .

• Error code 6 is a PRINT or PAUSE format error. It occurs when a dis
play of numerical data is not in the format that has been specified.

Editing Features

• Correcting: Use the@] or � keys to move the cursor to the position
where the correction is needed. Then enter the correction.

·

• Inserting: Use the @) or �keys to move the cursor to the position
where you want the insertion to be made. Then press SHIFT � to in
sert the character desired. The contents of the position under the cursor
and all after it will be shifted one place to the right. Press SHIFT and � before each successive inse·rtion if there is more than one to be
made.

• Deleting: Use the @] or � keys to move the cursor to the position you
want to delete. Then press SHIFT @1 to delete that character, nu
meral, or statement. The contents of that position will be deleted and all
following will be shifted to the left.

ERROR CODES, EDITING, AND CASSETTE USE 61

Using the Cassette Recorder

The optional cassette interface (Radio Shack Catalog Number 26-3503) makes the
Pocket Computer an even more useful tool; programs may be SA VEd permanently for
future use. One of its practical uses is to save frequently used subroutines. The subrou
tines can then be added from the cassette to any program that you wish. The
Minisette-9 Cassette Recorder (Radio Shack Catalog Number 1 4-1 8 1 2) is an excel
lent companion to the Pocket Computer because it is both portable and operates on
batteries.

One subroutine that you will use frequently is a random number generator. Ran
dom numbers are used for the occurrence of unpredictable events in recreational or
business simulations. Such unpredictable events can be programmed to occur ran
domly during program execution.

Some computers have such a function built in, but due to the size of the Pocket
Computer, this feature was not incorporated. However, a short subroutine can be writ
ten to generate numbers randomly. There is such a program on page 1 1 2 of the TRS-
80 Pocket Computer Software Manual. We have modified that program to fit our
particular needs at this time, starting it with a high line number (900) that wouldn't
interfere with lower numbered programs.

Random Number Subroutine
9 li! li! ' ' A ' ' : I.NPUT ' ' I NI T I AL VALUE (1 - 9) ? ' ' ; Z
9 1 li! X=ABS (4 3 9 1 4 7 +X+Z)
9 2 li! Y= (E 2 : 1,_ ___________ _
9 3 li! W=2 3 * X
9 4 li! X=W- I NT (W/ Y) * Y
9 5 li! I F X=li! THEN 9 1 li!
9 6 li! RETURN

IE is the Exp key

WARNING! The subroutine uses variables W,X,Y,
and Z. If you use any of these variables in your main pro
gram, the subroutine will alter your values.

When the computer returns from the subroutine, a random number will be as
signed to X. Use it in any way you wish. In line 920, Y is assigned to the value E2 + 1 .
That's just another way to express 1 02 + 1 , or 1 0 1 . Notice line 940 of the subroutine.
Doesn't that look like Little Fred's check of the 24-hour clock subroutine call prob
lem? h sure does. The random number generator is using the remainder of a division
to get its random number.

Save the Subroutine on Cassette

If you have the optional cassette interface and a recorder, you will want to save, the
subroutine on tape.

1 . Enter the subroutine i n the Pocket Computer. A program may be saved
in the DEF, RUN, or PRO mode. You can leave the computer in the
PRO mode used to enter the program.

62 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

2. Connect the cassette interface and recorder as described in the Appendix
of your TRS-80 Pocket Computer Software Manual.

3 . Insert a new, blank cassette in the recorder and rewind it. If i t has a clear
leader on it, wind the tape past the clear leader so that data can be re
corded.

4. Note the index setting of the recorder. Set the controls of the recorder so
that it is ready to record. Then type CSA VE "RANDOM" and press
ENTER. RANDOM will be the name of the cassette file which contains
the subroutine.

As the program is being recorded, you may notice that it goes to the RUN mode.
When the program has been completely recorded, the cassette stops and the computer
returns to the PRO mode. You should now check to see if the program was success
fully loaded.

5 . Reset the cassette tape to the beginning of the previous recording. Press
the PLAY button on the recorder.

6. Type CLOAD?"RANDOM" and press ENTER.

CLOAD? compares the information on the tape to the in
formation in memory. If they are not the same, error code
5 will be displayed.

c 5 ,)
� Either a bad SA VE or a

bad LOAD

Reset the tape to the beginning of the recording and try again. You may have to
experiment with the volume control of your recorder.

When you have a successful CLOAD? the computer will return to the PRO
mode and display the usual prompt [>] .

c >

LOAD the Subroutine from Cassette

In the future, you _¥ill want to add this subroutine to other programs. Ordinarily, when
you LOAD a program from tape, all programs currently in the computer are erased.
The Pocket Computer has a feature to avoid this. The command:

CLOAD 1 ' ' RANDOM ' ' ----------:.- t L_________ Add on the program
Load from bu.t !�ave the named "RANDOM".
tape, ex1stmg program(s)

m memory.

ERROR CODES, EDITING, AND CASSETTE USE 63

We will use this command to load the subroutine after we enter the main program.
The main program calls the subroutine, prints the resulting random number, and then
calls the subroutine again. This process repeats until you decide to stop it by pressing
the ON key to break into the program.

Main Program - Subroutine Call

1 0 GOSUB ' ' A ' ' ������·��������
2 0 P R I NT X

The subroutine is
labeled "A"

30 GOTO 1 0

Type NEW and enter the three-line, main program. Then set the controls of
your recorder to PLAY and the tape to the beginning of the subroutine that you saved.
Load the subroutine with the CLO AD I command.

(CLOAD 1 ' ' RANDOM ' ' �
Press ENTER. When the subroutine is loaded, LIST it line by line.

You Type. Computer Displays

LIST, ENTER

GJ
[!]
[!]
CT]

etc.

c 1 0 : GOSUB I ' A ' 1

c 2 0 : PRINT X

c 3 0 : GOTO 1 0

_____)
____)
_____)

9 0 0 : ' ' A ' ' : I NPUT

etc.

Remember, the display only
shows 24 characters.
However, the rest is
in the computer.

C 960 : RETURN) ---- ---

64 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

It's all there. RUN the program to check a few random numbers. Fill in the
chart in Problem 2. The computer will ask you to input an initial value each time that
the subroutine is called. We used 5 for our input each time. Use any number you wish.
(The answer is at the end of the chapter.)

Initial Value Random Number

We You Ours Yours

5 50

5 30

5 75

5 1 00

5 69

5 63

5 26

5 84

5 4

5 83

5 82

5 59

5 35

5 89

5 1 8

Problem 2. Random Number Chart

Applying the Random Number Generator

The Popup Toy Company, which manufactures ten different kinds of toys, has re
cently automated their factory. As a toy comes off the production line it is placed in
one of ten different bins. One worker sits at a display console where he has control of a

ERROR CODES, EDITING, AND CASSETTE USE 65

robot that travels down the line of bins. The worker presses one of ten buttons to tell
the robot which of the ten toys to search for. The robot looks in each bin in turn and
reports whether that bin contains the particular toy that it is searching for. If the robot
doesn't find the toy in the first bin, he reports, "X NOT HERE." (X is the number of
the particular toy.) If he finds the toy, he reports, "X FOUND �N BIN Y." (Y is the
number of the bin where the toy is found.)

The company wants a computer program that will handle the messages. Each
toy is numbered so that the robot can compare the toy's number with the number it is
searching for.

Can you write such a program for the Pocket Computer, using the Random
Number subroutine to fill the bins with toys? Record your program in the box
provided.

Your Toy Program

Problem 3. Toy Program

Here's the program that PO PUP TOYS used.

Popup Toys Program
·1 p FOR N= 1 TO 1 p

Get a random 2 p GOSUB ' ' A ' ' ���������������������
3 p A < N) =x number for
4 P NEXT N /\------ each toy
5 p I N PUT " P I CK A TOY (1 - 1 P) " ; A (1 1)
6 p FOR N= 1 TO 1 p
7 p I F A (N) =A (1 1) BEEP (1) : PRINT A (1 1) ; " I S I N B I N " ; N Spaces separate
BP IF A (N) < > A (1 1) PAUSE A (1 1) ; " NOT�HERE ' ' numbers from text
9 P NEXT N
1 p p BEEP (3) : GOTO 5 p

- Look in each
bin and report

66 PROBLEM-SOLVING ON THE.TRS-80 POCKET COMPUTER

Try their program as well as your own. After you enter their program, CLOADl
the Random Number subroutine. Change line 920 to:

This will keep the random
numbers in the range of
1 through 1 0.

When you run the program, the Random Number subroutine loads the bins randomly
with toys numbered from 1 through 10. Remember, you must type in an initial value
each time to "seed" the random number generator. The toy's number will not coincide
with the number that you type in for the initial value. The computer then displays:

�-����P-I_c_K�
A_T_o_Y�(-1_-_1 �_>_-�

)

The worker would then type in the number of the toy that he desired. The robot
searches the bins from l through 10, reporting back "X NOT HERE" or "X IS IN
BIN Y," depending on whether he spots that toy or not. Put yourself in the place of the
worker at the console. RUN the program and fill in the toy number found in each bin.

2 3 4 5 6 7 8 9 10
Problem 4 . TOYS in Bins

Here is a typical result that we obtained after going to the subroutine ten times to load
the boxes.

(PICK A TOY (1 - 1 �) 1)
BEEP!

(1 . I S I N BOX 1 .)
Then for nine times in a row as it searches boxes 2 through 10 .

C 1 . NOT HERE) ----

ERROR CODES, EDITING, AND CASSETTE USE 67

Boxes so far:

I I I I I I I I I I I
2 3 4 5 6 7 8 9 1 0

c_·���P-I
C-K�

A
�
T-O_
Y
(
1_-_
1
_� _)_
2�_,)

No BEEPS this time. Just ten times in a row:

r � - N OT HERE) '-------
c-���P-IC-K�A

�
T-O_Y_(_1_-_1_� _)_3�--"�

BEEPS at boxes 4 and 7 .

Boxes so far:

2 3 4 5 6 7 8 9 1 0

We kept going until we had all boxes full . Our distribution looked like this:

2 3 4 5 6 7 8 9 1 0

Notice that the robot must look in each bin, even i f i t has already found a toy in
one or more of the bins. Can you modify our program so that the robot will pass by the
bins where he has previously reported a toy found? (Answers are at end of chapter.)

68 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Your Modified Toy Program

Problem 5. Popup Toys Modification
Summing Up Chapter Three

New Pocket Computer BASIC Statements and Functions

Statement Accepted Remarks
or Function Abbreviations

INT - Find the largest integer contained in the
specified expression.

ABS AB. Take the absolute value of the specified
expression.

GOSUB GOS. Go to the subroutine starting at the
GOSU. specified line or label.

RETURN RE. Return from the subroutine to the main
RET. program.
RETU.
RE TUR.

CSA VE CS. Record a program from memory onto a
CSA. cassette tape.
CSAV.

CLO AD CLO. Load a program from cassette into
CLOA. memory (other programs in memory are

erased).

CLO AD? CLO.? Check contents of program in memory
CLOA.? with those placed on tape by previous

CSA VE.

CLOADl CLO. I Load a program from cassette into
CLOA. 1 memory (adds it to program(s) already

there) .

Note: Periods in abbreviations must be included.

ERROR CODES, EDITING, AND CASSETTE USE 69

Error Codes

Number Cause

1 Syntax error
Operating error
Error in memory specification

2 Line number error

3 Level error (GOSUB or FOR-NEXT)

4 Insufficient memory

5 Control error of magnetic tape

6 Error in PRINT or PAUSE format

Editing Features

Correcting: � or@Jkey used to move the cursor to the
position where correction is to be made.

Inserting: Same keys used as in correcting to position
cursor. SHIFT, � INS for INSERT keys used
before inserting a new character.

Deleting: Same keys as for correcting used to position
cursor. SHIFT, @] DEL for DELETE keys used
before deleting a character, numeral, or
statement.

Other New Items:

• Exp key is used to raise 10 to the specified power. The symbol displayed is
IE.

• A Random Number generator was given for future use.
• Subroutines were introduced using GOSUB and RETURN.
• The IF-THEN statement requires a line number following the word

THEN. For other uses of an IF statement, a direct statement such as .
PRINT, PAUSE, or LET should follow the specified condition.

Chapter Three Self-Test

1 . The Popup Toy Company needs a program to display the inventory of each of its
ten toys after monthly sales are reported. The inventory must be known at the be
ginning of each month. The monthly sales for each toy is input and the resulting
inventory is displayed. Write the program to obtain the original inventory from
the Random Number subroutine (values 1 through 1 ,000) for each toy. The
monthly sales of each toy must be input from the keyboard. The ending inventory
is calculated and displayed.

70 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

HINT: Line 920 of the subroutine must be changed to give values I through
1 ,000.

Your Program (including the subroutine)

ERROR CODES, EDITING, AND CASSEITE USE 71

2 . Fill in the following chart when you run your program.

Toy # Starting Monthly
Inventory Sales

1

2

3

4

5

6

7

8

9

10

Ending
Inventory

3 . Add a section to your (or our) program for Problem 1 so that the month's produc
tion of toys can be added to the ending inventory. Then have the program repeat
itself for a full year. The first month's inventory is random, but then Popup can
build more toys.

Your Additions or changes

72 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

I .
1 i;J FOR N= 1 TO 1 i;J
2 i;l GOSUB ' ' A ' '
3 i;J A (N) =X
4)J NEXT N

Answers To Chapter Three Self-Test

1)J)J REM * D I S P LAY AND I NPUT *
1 1 i;l FOR N= 1 TO 1 i;J
1 2)J PRINT ' ' TOY # ' ' ; N ; ' ' ' ' ; A (N)
1 3 i;J I NPUT ' ' MONTHLY SALES = ' ' ; S
1 4)J A (N) =A (N) -S
1 5)J I F A (N) <)J P R I NT ' ' NOT ENOUGH I NVENTORY ' ' : A (N) =A (N) +S : GOTO 1 2)J
1 6)J NEXT N
1 7 i;J BEEP (3)
1 8)J REM * D I S P LAY NEW I NVENTORY *
1 9)J FOR N= 1 TO 1)J
2 i;l i;J P R I NT " TOY # " ; N ; " " ; A (N)
2 1 i;l NEXT N
2 2)J END

2. Answers will vary, but here is ours.

Toy # Starting
Inventory

1 5 1 4
2 285
3 978
4 878
5 5 1 1
6 1 93
7 8 1 8
8 1 55
9 36
1 0 233

3 . Additions or Changes

1 i;l 5 FOR M= 1 TO 1 2
1)J 7 PAUSE ' ' MONTH # ' ' ; M

Monthly
Sales

26
85

1 55
4 1 3
450
1 03
500
1 40
1 0

1 33

2)J 5 I NPUT ' ' NEW TOYS PRODUCED = ? ' ' ; T
2)J 7 A (N) =A (N) +T
2 1 5 NEXT M

Ending
Inventory

488
200
823
465
6 1
90

3 1 8
1 5
26

1 00

ERROR CODES, EDITING, AND CASSEITE USE 73

A typical two month's run of the program would produce results similar to these:

Toy # Starting Montly Ending
Inventory Sales Inventory

First 1 852 55 797
Month 2 28 14 1 4

3 3 3 0
4 383 85 298
5 275 77 1 98
6 656 500 1 56
7 502 25 1 25 1
8 9 1 8 490 428
9 499 88 4 1 1
1 0 964 555 409

Second 1 797 350 447
Month 2 2 1 4 1 00 1 1 4

3 3 30 1 33 197
4 498 205 293
5 298 95 203
6 256 1 90 66
7 25 1 10 1 1 50
8 428 99 329
9 41 1 1 00 3 1 1
1 0 409 255 ,. 1 54

Answers to Problems in Chapter

1 . Subroutine Problem
A general program to solve the problem would look similar to this:

1 0 REM * F I ND R FOR T/Q *
2 0 I NPUT ' ' T= ' ' ; T
3 0 I NPUT ' ' Q= ' ' ; Q
4 0 P R I NT ' ' REMAI NDER= ' ' ; T- I NT (T/Q) * Q
5 0 END

(50 could be GOTO 20 if there are more than 1 T and/ or Q.)
2. Random Numbers

Initial Value Random Number

We l You Ours I Yours
I I

We can't tell what your
answers will be, but your
random numbers should be
in the range of 1 through I 00.

Added
Production

0
200
330
200
1 00
100
0
0
0
0

0
200
1 00
0
1 00
250
1 50
0
0
1 50

74 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

3 . Toy Program
Compare your program with the one on page 65.

4. Toys in Bins
Again, your answers are random and unpredictable.

5. Popup Toys Modification
Solution 1
In this solution, the robot looks in each bin, but does not bother to report the bins

where the desired toy does not exist.
ELIMINATE LINE 80

This cuts down the GOTO loop executions of lines 50 through 1 00 from about 4
minutes to approximately 2 minutes because the PAUSE statement takes about 0.85

seconds for each execution.
Solution 2
In this solution, a light on the front of the bin is turned on when a toy has been

found by an addition to line 70. A new line 65 is added to allow the robot to check the
light. The GOTO loop looks like this:

50 I NPUT " P I CK A TOY (1 - 1 0) " ; A (1 1)
60 FOR N= 1 TO 1 0
6 5 I F A (N) =0 THEN 9 0
7 0 I F A (N) =A (1 1) BEEP (1) : PR I NTA (1 1) ; ' ' I S I N B I N ' ' ; N : A (N) =0
80 I F A (N) < > A (1 1) PAUSE A (1 1) ; " NOT HERE " / 90 NEXT N
1 00 BEEP (3) : GOTO 5 0

Turn on light
when a toy is
found.

This program takes approximately 3 minutes to execute the loops.
Solution 3
This solution makes use of a logic statement in line 70 to report which toy is

found in a particular bin. It reports only when the toy is found. The GOTO loop:

50 I NPUT " P I CK A TOY (1 - 1 0) " ; A (N)
6 0 FOR N = 1 TO 1 0
7 0 Y= (A (N) =A (1 1))
8 0 I F Y= 1 BEEP (1) : PR I NT ' ' TOY # ' ' ; A (1 1) ; ' t' ---1I S I N B I N ' ' ; N
90 NEXT N
1 0 0 BEEP (3) : GOTO 5 0

Don't forget the space
to separate numbers
from text.

If the statement at line 70 is FALSE, line 80 is not executed, and the next A(N)
is tested. This solution takes about 2 minutes to complete the search if you are fast in
recording the results.

CHAPTER FOUR

Data Files

You learned how to save and load programs in Chapter 3. You worked with an inven
tory program in the problem section that created and kept track of Popup Toys' sup
ply. However, the data were stored in the computer's memory and were not saved for
future use. This is not very practical unless you are not going to use the computer for
anything else. But chances are that you are going to want to record a lot of personal
and business data once you start using your Pocket Computer.

In this chapter, you will learn:

• how to store a data file on cassette tape;
• how to retrieve a data file from cassette tape;
• how to use a program that:

a) inputs inventory data from the keyboard or from cassette tape,
b) allows you to modify the data
c) allows you to save the resulting data file on tape for future use.

The Popup Toy inventory program introduced in Chapter 3 can be made more
useful by revising the program to include saving the inventory data from month to
month. Programs are saved by the CSA VE statement, but data is saved with a PRINT
statement in one of two formats.

a) To save a specified memory and all that follow:
PRINT # ' ' DATA 1 ' ' ; A (S)

I I I ' Y
save on a data file
cassette tape named

DATA 1

save the data in
memory A(5) and all
memories following A(5)

b) To save all data memories in sequence:
PRINT # ' ' DATA 2 ' '
I l 'L���--'

save on
cassette tape

a data file
named
DATA 2

no memories
specified

These statements may be executed from within a program or in the immediate
(manual) mode. Of course you must have your cassette interface and recorder con
nected as shown in the TRS-80 Pocket Computer Software Manual. The recorder

76 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

must be turned on and ready to record the data when the PRINT # statement is exe
cuted.

If you save data on a cassette tape, you must be able to load the data back into
the computer. TRS-80 Pocket Computer BASIC uses the INPUT # statement to do
this. It too may be used in two forms.

a) To input data from a specified memory in sequence:
I NPUT # • ' DATA 1 ' ' ; A (S)
I I I 'T

Input from
cassette tape

the data
file named
DATA 2

b) To input a whole file:
I NPUT # ' ' DATA 2 ' '
I I ._! _ _,.. _ __.

put into memory starting
from A(5)

Input from
cassette tape

the data no memory specified
file named
DATA 2

The computer searches the cassette tape for the specified file name. It loads only
the data from the named file and ignores data contained in other files with different
names. The data are loaded in sequence starting from memory 1 in format b, or from
the memory specified in format a.

Cassette Use - Immediate Mode

Use the following program to input data from the keyboard to create a data file.
Load lnventory Program 1 � REM * I NPUT DATA*

4� FOR Y = 1 TO 1 �
5 � PAUSE ' ' TOY # ' ' ; Y
6� INPUT ' ' HOW MANY? ' ' ; A (Y)
7 � NEXT Y

You'll notice that we skipped some line numbers between 1 0 and 40. Later we'll
add some lines there to expand this section as we develop a more complete inventory
program.

Enter the above program and RUN it using the following data:

Toy Input
Number Inventory

30
2 40
3 50
4 60
5 70
6 80
7 90
8 1 00
9 1 1 0

1 0 1 20

,-- , ·

DAT A FILES 77

During each pass through the FOR-NEXT loop the computer will flash the toy num
ber briefly and then ask you how many. Wait for it to PRINT:

C HOW MANY?_) ----

before typing in the inventory number. Then press ENTER to move on to the next toy.
After you've finished putting in the data, insert the Pocket Computer in the cas

sette interface (if it's not already there) . Connect the recorder and insert a blank cas
sette. Saving a data file t.akes lots of tape space. Don't try to save data on a tape
containing other data files or programs unless you are positive that there is enough
room. Turn the recorder on and make the necessary settings to prepare it for
recording.

Type: C PRINT # ' ' I NVEN . ' ' -) ----
Press ENTER

Be prepared to wait awhile. It takes some time for all data memories to be saved.
After the data have been saved on the tape, the recorder stops and the computer

displays its ready prompt.

(__ > ___)
Type CLEAR to ciear the computer's memories.

Press ENTER.

C CLEAR_) ----

Just to make sure that the memories have been cleared,

Type

c_. -A-(1)-- ___)
and press ENTER.

78 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

(____
�) I

Yes, A(1) has been cleared.

Make sure your recorder is ready to input. Press the PLAY button and type:

C I NPUT # ' ' I NVEN . ' ' -) ---- and press ENTER.

The data is read from the tape. Then the > prompt appears.

c_- _> ____)
Type A(1) and press ENTER.

(3 �) --- The same value _ --------------- you entered and
saved

Check the other memories - A(2) through A(! 0) - in the same way. Make
sure that they are the same as those used in Memory-Use Chart on page 8 1 .

Cassette Use - Program Mode

When you are sure the data are correct, it's time to write a complete program that
Popup Toys can use to keep a record of its inventory.

They need:

I . An input section that will either input data from the keyboard or from
cassette tape,

2 . A section to enter monthly sales and compute the modified inventory,
3 . A section to display the modified inventory and record the month's pro

'duction, and
4. A section to record the month-ending inventory on tape so that it will be

ready to input next month.

Let's look at the program one section at a time.

Popup Toy Inventory Program
I -Input the Data

1 0 REM * I NPUT DATA*
2 0 I NPUT ' ' DATA TAPE (YES OR NO) ? ' ' ; Z $
3 0 I F Z $ = ' ' YES ' ' THEN 1 00 -+-----
4 0 FOR Y = 1 TO 1 0
5 0 PAUSE " TOY # " ; Y
6 0 PRINT ' ' HOW MANY? ' ' ; A (Y)
7 0 NEXT Y �---------'
8 0 BEEP (1)

'

DAT A FILES 79

Skip 40 through 90 if
data are from
tape

· From keyboard

9 0 · GoTo 2 0 0 ��----- Skip tape section ·-----
1 0 0
1 1 0
1 2 0
1 3 0

REM * READ DATA TAPE * i f data are
PRINT ' ' READY YOUR RECORDER ' ' from keyboard
INPUT # ' ' I NVEN . ' '
BEEP (2) ------- Read data tape

Either lines 40 through 90 or 1 00 through 1 30 are used, depending on whether
the data to be input are coming from the keyboard or tape.

2 - Enter Sales

2 0 0 REM * ENTER SALES *
2 f 0 FOR Y = 1 TO 1 0
2 2 0 PRINT ' ' TOY # ' ' ; Y ; ' ' ' ' ; A (Y)
2 3 0 INPUT ' ' MONTHLY SALES = ' ' ; S
2 4 0 A (Y) =A (Y) -S
2 5 0 I F A (Y) < 0 PRINT ' ' NOT ENOUGH I NVENTORY ' ' : A (Y) =A (Y) +S :

GOTO 2 3 0
2 6 0 NEXT Y
2 7 0 BEEP (3)

To use this section:
Line 220 prints the toy number and the amount in inventory.
Press ENTER to go on.
Line 230 prints • • MONTHLY SALES? • • and waits for you to type in how many of

that particular toy were sold. Enter sales and press ENTER.
Line 240 subtracts the toys sold from the amount on hand to compute the modi

fied amount of that toy on hand.
Line 250 checks to make sure you have enough of the particular toy to make the

requested number of sales. If there is not enough, a new number of
sales is requested.

Line 270 beeps three times to signal the end of this section.

80 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

3 - New Inventory and Production

3 0 0 REM * D I S PLAY NEW I NVENTORY AND P RODUCTION*
3 1 0 FOR Y = 1 TO 1 0
3 2 0 PRINT " TOY # " ; Y ; " " ; A (Y)
3 3 0 I NPUT ' ' NEW TOYS PRODUCED= ' ' ; T
3 4 0 A (Y) =A (Y) +T
3 5 0 PRINT ' ' SUPPLY NOW= ' ' ; A (Y)
3 6 0 NEXT Y

To use this section :
Line 320 prints the toy number and the supply on hand following the sales of

section 2 .
Press ENTER to continue.
Line 330 prints NEW TOYS P RODUCED= and waits for you to input the number of

new toys.
Input the number of new toys produced.
Press ENTER.
Line 340 computes the resulting inventory.
Line 350 prints the new supply of that particular toy. Press ENTER to continue.
The lines above are repeated for each toy (I through 10) .

4 - Save Data File on Tape

400 REM * SAVE DATA F I LE *
4 1 0 I NPUT ' ' SAVE F I LE ON TAPE? ' ' ; Z $
4 2 0 I F Z$ = ' ' NO ' ' THEN 4 4 0
4 3 0 PRINT # ' ' I NVEN . ' '
4 4 0 BEEP (4)
4 5 0 END

Line 4 10 allows you to make a choice as to whether or not you want to save the
data. If you do, type YES. The data will be saved on tape by line 430.
BE SURE YOUR RECORDER IS SET TO RECORD THE DAT A.
If you type NO, line 420 will cause line 430 to be skipped.

Line 420 checks your response to line 4 1 0. If your answer was no, line 430 is
skipped.

Line 430 records the data file on tape.
Line 440 beeps four times to signal the end of the program.
Line 450 is the END.

The Memory-Use Chart shows which memories have been used and for what
purpose. A tabulation of memory use should be made to ensure that you are not trying
to use a memory location for more than one quantity.

DATA FILES 81

Memory Use

1 A(l)
2 A(2)
3 A(3)
4 A(4)
5 A(5) Inventory
6 A(6) ,_...

by toy number
7 A(7)
8 A(8)
9 A(9)
1 0 A(I O)

-

1 1
1 2
1 3
1 4
1 5 ,__ Unused
1 6
1 7
1 8

1 9 s Monthly Sales
20 T New toys produced

2 1 � Unu"d 22
23
24

25 y Loop counter
26 Z$ Response to question

Memory-Use Chart for Inventory Program

Enter the.complete program. You have a data file named INVEN. on cassette
tape. Run the program and enter the data from your cassette tape. Then fill in the
blanks in Problem 1 as you go along.

Your first response is requested at line 20 .

C DATA TAPE?_)_ __ _ Since you have the data on
tape, type YES.

82 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

The computer will go to line I 00 and display:

(READY YOUR RECORDER �
Be sure your recorder is ready to PLAY the tape. Then press ENTER. The data

will be input from the tape. This will be followed by two beeps to let you know when to
go on. Lines 200 through 260 then allow you to enter the sales from Problem I . When
this has been finished, three beeps will sound. The computer then moves to line 300.
You will first see:

�'�
��

T-O_
Y
_
#
_
1
_
.
�
2-�--

����---�

This informs you that there are now 20 toy # 1 's in stock after the month's sales. Press
ENTER to continue. The computer then displays:

(NEW TOYS PRODUCED=_)
The computer adds this value to the stock on hand and displays:

(--��-S -UP_P_L_Y�N-o_w=�S-����--�

From Problem 1 ,
type 30

This is the month's ending inventory. Type ENTER to continue. Then the process is
repeated for toys 2,3,4,5,6,7,8,9, and 1 0. Type in the appropriate new production from
Problem 1 .

Toy # Input
Inv en.

1 30
2 40
3 50
4 60
5 70
6 80
7 90
8 1 00
9 1 1 0
1 0 1 20

Monthly New
Sales Inv en.

1 0
20
25
3 1
20
1 4
7 5
60
80
85

Problem I . Inventory Program Results
(answers at end of chapter)

New Ending
Produc. Inven.

30
20
1 5
30
0
0

25
1 0
20
20

When all has been completed, the computer will ask:

C SAVE F I LE ON TAPE?_) -----

DAT A FILES 83

Type YES to save the ending inventory. Before pressing ENTER, be sure your recor
der is ready to record. Then press ENTER and the data will be saved. Four beeps will
be heard after the data is successfully saved. Then the > prompt is shown as the pro
gram ends.

(___ > ___)
Have your data been saved correctly?
To find out:

I) Type CLEAR to clear the existing data memories.
2) Set the cassette back to the beginning of the inventory data file just

saved. Set your recorder to PLAY the data back in. Then type
I NPUT # • • I NVEN . • • and press ENTER.

3) After the data are typed in, type A(I) and press ENTER. Fill in the re
sult in Problem 2.

4) Repeat step 3 for each memory A(2) through A(I O) .

Type Toy # Inventory

A(!) ENTER I

A(2) ENTER 2

A(3) .ENTER 3

A(4) ENTER 4

A(5) ENTER 5

A(6) ENTER 6

A(7) ENTER 7

A(8) ENTER 8

A(9) ENTER 9

A(I O) ENTER 10

Problem 2. Inventory Check After Reloading Data
(answers at end of chapter)

84 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Now that you know how to use the Popup Toy Inventory Program, RUN the
program and keep a three-month account using the data in Problem 3. You're on your
own this time. Fill in the data as the program is executed.

Month Toy Starting Sales Production Final
Number Inventory Inventory

1 1 50 20 30
2 35 1 5 40
3 70 50 60
4 83 45 20
5 42 22 40
6 79 38 20
7 66 0 0
8 42 28 32
9 1 5 7 50

10 1 00 44 0

2 1 20 30
2 28 20
3 52 30
4 35 20
5 42 30
6 28 20
7 42 40
8 33 30
9 20 0

1 0 48 40

3 1 35 20
2 40 50
3 22 40
4 38 50
5 42 50
6 22 30
7 32 40
8 28 40
9 22 30

10 20 30

Problem 3. Three-Month Record (answers at end of chapter)

How Data Files Are Recorded

You probably noticed that it took a long time and a lot of tape to record the ten items
of the Popup Toys Inventory Program. To make use of cassette tapes efficiently, you
should understand and make use of the method used to record data on the TRS-80
Pocket Computer.

DAT A FILES 85

Remember, first of all, how the memories in the Pocket Computer are used from
both ends.

Memory

1 i I 2 I 3 1 - � j 202 I 203 I 204

Data
from this -----..

end

Program
� from this

end

When data are recorded by the statement: PRINT #"INVEN." the recorder saves
the data from all memories from the DAT A end up to the end of the flexible program
memory used.

1 i I 2 I 3 1 . . . 1 i o 1 i i 1 i 2 1 · I · . . . · I 202 203 1 204 I
All this is saved

on tape
Program

In other words, the shorter your program is, the more data are saved by the
PRINT # statement. All memories are recorded from A(i) up to the end of the pro
gram, even though the memories may not contain data. A zero is recorded as the con
tents of memories not in use.

If you use memories A(i) through A(1 0) and the PRINT # format that records
all memories, much tape is wasted. If you knew where your program ended, you could
choose subscripts closer to the end of program memory, and thus save the total amount
of tape used to save the file.

Example:
Suppose the program ran to memory number 1 1 5 .

1 i 1 2 I 3 I · j 1 1 s I i 1 6 1 1 i 1 1 1 204 1
End Start

I Program

You might choose A(1 0 1) through A(1 10) for your data storage. Then use the print
format:

PRINT # ' ' I NVEN . ' ' ; A (1 0 1)

This would record only memories 10 1 through 1 10, thus saving the tape normally used
to record memories 1 through 100.

1 1 I 2 I 3 1 1 1 00 1 1 o 1 1 1 1 1 4 1 1 1 s 1 · I 203 I 204 I
I These
memories
ignored

I I These
memories
recorded

I Program

86 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Now, the problem is how do you find out where the program ends in memory?
Remember the MEM command? It will give you a clue. It tells you how many flexible
memories are free for your use. Here's what we did.

The Popup Inventory Program is in the computer.
We typed MEM.

, When we pressed ENTER, we saw:

� 8 5 9 STEPS 1 1 1 MEMORI ES �
L There's the clue.

1 1 1 flexible memories unused
(not counting the 26 fixed
memories - (1 through 26) .

I 2 I 1 2s I 26 I 21 I 1 1 31 1 1 38 1 I 204 I
I

I 26 fixed
memories

I 1 1 1 flexible Program
memories
unused

It looks like we could use A(1 2 1) through A(1 30) for our toy counters instead of
A(l) through A(l O) . However, we will drop down 1 0 more memories to be saved and
use A(l 1 1) through A(1 20). Much less tape will then be used for recording the values.

Just to get a feeling of the time saved in this approach, we disconnected the re-
corder and tested:

1 . PRINT # ' ' TEST ' ' ' and
2. PRINT # " TEST " ; A (1 1 1)

Here are their recording times:

PRINT # ' ' TEST ' '

PRINT # ' ' TEST ' ' ; A (1 1 1)

82 seconds

1 6 seconds

I 204 I
I ����-,----���.1--��--..��---JI

PRINT # ' ' TEST ' ' I I Program
recorded these in
82 seconds I 1 I 2 I I 1 1 1 I I I 204 I

PRINT # ' ' TEST ' ' ; A (1 1 1)

recorded these
in 1 6 seconds

I I Program

DAT A FILES 87

The second method used 1 6 / 8 2 or . 1 9 5 1 2 1 9 5 1 2 as much tape as the first method (less
than 1 /5 as much). It would be to your advantage to change the Popup Toys Inventory
Program to incorporate a change in the use of memories. See if you can change the fol
lowing Popup lines in Problem 4 so that you can use memories 1 1 1 through 1 20 for
holding the toy inventory.

Hint: Change FOR-NEXT loop start and end values. Add a new variable
X = Y - 1 1 0.

Line # New (or Modified) Line

40

45

50

1 20

2 1 0

2 1 5

220

3 1 0

3 1 5

320

430

Problem 4. Modifications to Popup Toys Inventory Program

88 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Summing Up Chapter Four

New Pocket Computer BASIC Statements

Statement Accepted
Abbreviation

CLEAR CL.
CLE.
CLEA.

INPUT # I. #
IN. #
INP. #
INPU. #

PRINT # P. #
PR. #
PRI. #
PRIN. #

Other New Items:

• PRINT # can be used in two formats:
a) PRINT # ' ' NAME ' '

b) PRINT # ' ' NAME ' ' ; A (1 1 1)

INPUT # can be used in two formats:
a) I NPUT # ' ' NAME ' '

b) I NPUT# ' ' NAME ' ' ; A (1 1 1)

�emarks

Clears all data
memories.

Transfers data from
cassette tape to
data memories.

Tra"nsfers data from
computer's memories
to casse.tte tape.

Records all data memories
onto cassette tape.

Records all data memories
from 1 1 1 upward onto cassette
tape.

Transfers data from cassette
to computer's data memories
in sequence beginning with
memory # 1 .

Transfers data from cassette
to computer's data memories
in sequence beginning with
memory # 1 1 1 .

• The amount of tape used to record a data file depends upon the PRINT # format
used.

• PRINT # and INPUT # can be used from either the manual mode (DEF or
RUN) or from within a program.

• After al l the practice in this chapter, you should now be proficient in the use of the
cassette recorder for data files.

., -� . . , . .'

DATA FILES 89

Chapter Four Self-Test

1 . You have a list of ten people that you frequently call on the telephone. Write a
program that will input their last names and seven-digit telephone numbers from
the keyboard. Include a section that will save the names and phone numbers in a
cassette data file.

2 . Write a program to input the cassette data file of Problem I and display the
names and corresponding phone numbers,

90 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

3 . Write a program to search the file created in Problem . I and print only the name
and phone number of the name that is input.

4. Write a program similar to the solution to Problem 3. Only this time, input the ,
phone number desired and print the name and phone number.

DATA FILES 91

5. Add a section to your (or to our) solution to Problem 2 that will let you search for
a name, delete that name and phone number, and then move all names that follow
the deleted name up one position.

Answers to Chapter Four Self-Test

1 . Your variables, FOR-NEXT parameters, line numbers, format, etc. may be dif-
ferent from our solution. Ours is merely given as a guide.

1 0 FOR Z= 1 0 1 TO 1 1 0 : Y=Z+ 1 0
2 0 INPUT ' ' NAME ? ' ' ; A$ (Z)
3 0 I NPUT ' ' PHONE NUMBER? ' ' ; A (Y)
4 0 NEXT Z
5 0 PRINT # ' ' PHONE # ' ' ; A (1 0 1)

2. Again, your program may be different. Try yours and ours with the file created in
Problem 1 to see if they work.

1 0 I NPUT # " PHONE # " ; A (1 0 1)
2 0 FOR Z= 1 0 1 TO 1 1 0 : Y=Z+ 1 0
3 0 PRINT A$ (Z) , A (Y)
4 0 NEXT Z

3 . We are using the phone file data from Problem 1 .

4 .

10 I NPUT # ' ' PHONE # ' ' ; A (1 0 1)
2 0
3 0
4 0
5 0

I NPUT ' ' NAME DESI RED? ' ' ; X $
FOR Z= 1 0 1 TO 1 1 0 Y=Z+ 1 0

I F A$ (Z) =X $ PRINT A $ (Z) , A (Y)
NEXT Z

1 0 I NPUT # ' ' PHONE # ' ' ; A (1 0 1)
2 0 INPUT ' ' PHONE # DES I RED? ' ' ; P
3 0 FOR Z= 1 0 1 TO 1 1 0 : Y=Z+ 1 0
4 0 I F A (Y) =P PRINT A$ (Z) , A (Y)
5 0 NEXT Z

92 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

5 . This is the way we did it:
F p bl 2 } rom ro em you

1 0 INPUT # ' ' PHONE # ' ' ; A (1 0 1) .
'

2 0 FOR z = 1 0 1 TO 1 1 0 : Y=z+ 1 0 can exa�me the names
3 0 PRINT A$ c z l , A c Y) to see which to delete
40 NEXT z from the printout (line 30) .

1 0 0
1 1 0
1 2 0
1 3 0
1 4 0
2 0 0
2 1 0
2 2 0
2 3 0
2 4 0

INPUT ' ' NAME T O BE DELETED? ' ' ; X $ _____
FOR z= 1 0 1 TO 1 1 0 ---- Type name

IF A$ (Z=X$ GOSUB 2 0 0 ------���T z Search for the name
w=z Move all names, and
FOR z=w TO 1 0 9 : v=z+ 1 : u= z+ 1 0 : T=z+ 1 1 numbers below the one

A$ (Z) =A $ (V) : A (U) =A (T) : A$ (V) = ' ' ' ' : A (T) = 0 to be deleted, up NEXT Z
Z=Z+ 1 : RETURN one position.

When you run the program, lines 1 0 through 40 allow you to look at the names
and numbers in the file. Lines 100 through 1 30 conduct the search for the name that
you want to delete. The subroutine (lines 200 through 240) deletes the requested
name, if found, and moves all the names up one position. The last position is blanked
out.

Here are the names and numbers in our phone file.

ABLE 1 1 1 1 1 1 1
BAKER 2222222
CARTER 3333333
DOUGLY 4444444
EASY 5555555
FARMER 6666666
GOODE 7777777
HARRY 8888888
INMAN 9999999
JONES 1 2 1 2 1 2 1

This is what a typical run looks like from line 100 onward.

(NAME TO BE DELETED?_)
(>)

To see whether the name had been deleted, we typed:

We typed FARMER

The END of the program

(RUN 2 iJ) (so that the original file
______________ _.. was not input again)

Jn order, we saw the file that was left.

c ABLE 1 1 1 1 1 1 1)

(BAKER 2 2 2 2 2 2 2 ·)

(_____ c_A_R_T_E_R ______
3

_
3

-
3 3_3_3_3__..�

DOUGLY
4 4 4 4 4 4 4

.)
�
------E-A_s_Y _______

s s_s_s_s_s_s_.,�

DATA FILES 93

(____
G_o_o_o_E _____ 7_7_7_7_7_7_7_)\1 FARMER is gone.

c
�----H

-
A
-
R
-
RY
------8-8

_
8
_
8
_
8
_
88-..,�

---------------- All these moved up

C) I one position.

_
I N MAN 9 9 9 9 9 9 9 ._

(
_____ J_o_

N_E_s ______
1_2_1_2_1 2___.1 .�

(� .) - Last name is now blank
---------------- with 0 as phone number.

94 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Answers to Problems in Chapter

1 . Inventory Program Results

Toy # Input Monthly New New Ending
Inven. Sales Inv en. Produc. Inven.

j
1 30 10 20 30 50
2 40 20 20 20 40
3 50 25 25 1 5 40
4 60 3 1 1 9 30 59
5 70 20 50 0 50
6 80 1 4 66 0 66
7 90 75 1 5 25 40
8 1 00 60 40 10 50
9 1 10 80 30 20 50

1 0 1 20 85 35 20 55

2 . Inventory Check After Reloading Data

Toy # Inventory

1 50
2 40
3 40
4 59
5 50
6 66
7 40
8 50
9 50

10 55

3 . Three-Month Record

Month Toy Starting Sales Produc. Final
Number Inv en. Inv en.

1 1 50 20 30 60
2 35 1 5 40 60
3 70 50 60 80
4 83 45 20 58
5 42 22 40 60
6 79 38 20 6 1
7 66 0 0 66

DAT A FILES 95

Month Toy Starting Sales Produc. Final
Number Inven. Inven.

8 42 28 32 46
9 1 5 7 50 58

I O I OO 44 0 56

2 1 60 40 30 70
2 60 28 20 52
3 80 52 30 58
4 58 35 20 43
5 60 42 30 48
6 6 1 28 20 53
7 66 42 40 64
8 46 33 30 43
9 58 20 0 38

10 56 48 40 48

3 1 70 35 20 55
2 52 40 50 62
3 58 22 40 76
4 43 38 50 55
5 48 42 50 56
6 53 22 30 6 1
7 64 32 40 72
8 43 28 40 55
9 38 22 30 46

I O 48 20 30 58

4. Modification to Popup Toys' Inventory Program

Line # New (or Modified) Line

40 FOR Y= 1 1 1 TO 1 2 �

45 X=Y- 1 1 �

50 PAUSE ' ' TOY # ' ' ; X

1 20 I NPUT # ' ' I NVEN . ' ' ; A (1 1 1)

2 I O FOR Y= 1 1 1 TO 1 2 �

2 1 5 X=Y- 1 1 �

220 PRINT ' ' TOY # ' I ; X ; I ' ' ' ; A (Y)

3 I O FOR X=Y- 1 1 �

3 1 5 X=Y- 1 1 �

320 PRINT ' ' TOY # ' 1 ; X ; I I ' ' ; A (Y)

430 PRINT # ' ' INVEN . ' ' ; A (1 1 1)

CHAPTER FIVE

Trigonometric Functions

The TRS-80 Pocket Computer has many functions that are built into its BASIC.
Some of them that you have already seen are INT and ABS (Chapter 3). In this chap
ter, you will be working with the Pocket Computer's trigonometric functions. You will
learn to solve geometric problems using right triangles. The sides and the angles of a
right triangle have special relationships that form trigonometric functions. Those
available on the TRS-80 Pocket Computer are:

• sine
• cosine
• tangent
• arcsin
• arccos
• arctan

You have learned the major features of the TRS-80 Pocket Computer in the first
four chapters. Therefore, Chapter 5 and those that follow are largely devoted to solv
ing a wide variety of problems. Those encountered in Chapter 5 involve:

• A boat crossing a stream
• A dog walking in circles
• A ship passing a lighthouse
• The height of a tall building
• Surveying measurements
• Area measurements
• Measuring an imm-easurable lake
• Fourier series

The solutions of all these problems are reached through the trigonometric functions of
the Pocket Computer, plus a little brain work on your part.

--�--.-.-. -.-------------------,--,----�--o-:-�--,---;----��·.--C,�-�--� � ""''""

TRIGONOMETRIC FUNCTIONS 97

Angle Measurement Systems

A right triangle is composed of the following parts:

a

b

A = a ngle
a = side opposite A
b = side a dja cent to A

(c is a lso a dja cent to A, but
it ha s a specia l name.)

c = h ypotenuse

The TRS-80 Pocket Computer is ideal for solving unknown parts of right triangles.
Some of the angle/side relationships are:

terns.

c2 = a2 + b2
b

I . Degree - an angular measurement based on the division of a circle into
360 equal angles - each being one degree.

sin A = a/c A = sin 1 (a/c)
cos A = b/c A = cos 1 (b/c)
tan A = a/b A = tan 1(a/b)

The Pocket Computer can work with three different angle-measurement sys-

1 degree = 1 /360 of a cir cle

2 . Radians - an angular measurement defined as the angle formed when the
length of the radius equals the length of the subtended arc.

� ------ w hen ar e S = r adius R,
S LA = 1 r adian .

._____..____. J Ther e ar e 2 r adians in a c ir cle.
Ther e ar e 360 degr ees in a cir cle.
Therefor e, 1 r adian = ¥ degr ees, or
1 r adian "' 57 .2958 degr ees.

R

98 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

3 . Grad - I/ I 00 of a right angle.

A
-- if LA = 90" L...1.-===::::::J 1 gra d = 1/100 of LA

or
1 gra d = 90/100 degrees

= 0.9 degrees

You may choose the angular measurement system that you wish to work in.

I . To designate the degree mode type:
DEG.
DEGR.
DEGRE.
or DEGREE

,
DEG

2. To designate the radian mode type:
RA.
RAD.
RADI.
RADIA.

or RADIAN

3. To designate the grad mode type:
GR.
GRA.

or GRAD

degree mode shown here

)

radian mode shown here

L_ grad mode shown here

G�'----)
NOTE: In all examples,
the abbreviations must
include the period.

TRIGONOMETRIC FUNCTIONS 99

We will usually be operating in the degree mode and will not show the angle
mode on the display unless we change modes.

The Pocket Computer has statements for sin, cos, tan, arcsin (sin-1) , arccos
(cos- 1) , and arctan (tan-1) to aid in the solution of trigonometric problems.

b

• sin (sine of an angle) is the ratio of the side opposite the angle to the hypo
tenuse (a/c).

• cos (cosine of an angle) is the ratio of the side adjacent to the angle to the
hypotenuse (b/c) .

• tan (tangent of an angle) is the ratio of the side opposite the angle to the
side adjacent to the angle (b/c).

• arcsin (sin 1) is the angle whose sine is specified.
• arccos (cos 1) is the angle whose cosine is specified.
• arctan (tan 1) is the angle whose tangent is specified.

Boat Problem

A girl in a boat is crossing a river 50 feet wide. The planned course runs perpendicular
(at a right angle) to the shore from point A to point B, but the current carries her
downstream at an a_ngle of 1 3 degrees.

How far downstream is her destination (C) from the point she was steering for
(B) ? ____ _

How far does the boat travel (from A to C)? _____ _

HINT: In solving problems of this type, always draw a picture first. If you can sketch
the conditions given, the problem is half solved.

a = ?

100 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Use the calculator mode of the Pocket Computer to compute the distances.
Write your answers in the box.

BC =

AC =

Which trig functions did you use:

1 . to get BC? _____ _

2. to get AC? ------
Solution to the Boat Problem

To solve a problem of this type, pick out one of the trigonometic function where two
parts of the triangle are known. In this problem you know that side b is 50 feet. You
also know that angle A is 1 3 degrees. You want to find side a. Therefore, you would
pick the tangent function.

On the computer

tan 1 3 degrees = a/ 50 feet

or

a = 50 X tan 1 3 degrees

C 5 0 *TAN 1 3_) ----
ENTER

(
feet downstream BC

To find side c, pick the cosine function.

cos 1 3 degrees = 50 feet/c, or c = 50/cos 1 3 degrees

TRIGONOMETRIC FUNCTIONS 101

On the computer

ENTER

C 5 1 , 3 1 5 2 � 5 3�
-----�-'

feet traveled AC

Of course, you should check your solutions each time a problem is solved.
Check the solutions:

c = v 502 + 1 1 .54342

On the computer (.., ___ v_<_
5
_0 __

2
_+_1 _1 _

. 5_4_3_4 __
2
>-....

)

ENTER

�

-
-

--5_1_
.
_3_1
5
_
2
�
3
_
2��

Pretty close

Another way to check the solution is by the known angle, 1 3 degrees. To check your
result for side a, use the inverse trigonometric function for known angle A and known
side b. That would be the arctan. You can also check the result for c by using the
known angle A and the known side b. That would be the arccos.

Angle A = arctan(a/b)
Angle A = arccos(b/c)

---- computed side

--------.,_r-;;_,�/ ___,
known side

On the computer (ATN (1 1 . 5 4 3 4 / 5 �))
-- ---

ENTER

c ... __________ ,
2
_.
9
_
9
_
9
_
9
_8 __ 9��

Pretty close
to 1 3 degrees

102 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

...--------- known side

----4·- computed side

On the computer

c

Walking The Dog Problem

ACS (51J/5 1 . 3 1 5 2)

ENTER

1 2 . 9999 9 7 3 90
''----- Very close

again

A man is walking his dog in a circle. The dog is on a 25-foot rope. The man walks in a
circle with a radius of 4 feet. The dog keeps the rope taut as he walks.

After walking through a 1 25-degree angle, how far has the dog walked?
______ How far has the man walked? _____ _

HINT: Think the problem through in radians. For each radian, the arc length walked
equals the radius. We have drawn the problem for you.

4 ft.

After 20 trips around the circle, how far has the man walked?

The dog? _____ _

; ''1! ' '
·� .

TRIGONOMETRIC FUNCTIONS 103

Solution to the Dog Walk Problem

For each radian, the dog walks a distance of 29 feet, the same as the radius of his cir
cle.

I I
I

I I I
I

I
/, I 1 ra dian

4 ft.

I

I
I I

I

25 ft.

Remember, a radian is approximately equal to 57.2958 degrees. Therefore, for 1 25
degrees, the dog walks (1 25/57.2938 radians) X (29 feet per radian) .

(1 2 5 / 5 7 . 2 9 5 8 * 2 9_)
ENTER

(6 3 . 2 6 8 1 6 2 7 6)
The man walks:

(1 2 5 / 5 7 . 2 9 5 8 * 4_)
ENTER

(8 . 7 266 4 3 1 4)
After 20 trips around the circle:

The man has walked: (2 * * 4 * 2 !J_) -- ---

c 5 i;l 2 . 6 5 4 8 2 4 6)

)

104 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

The dog has walked: (
(

Lighthouse Beacon Problem

2 * * 2 9* 2 �- �
3 6 4 4 . 2 4 7 4 7 8)

A ship at sea sights a lighthouse beacon at an angle of 1 6 degrees from the ship's head
ing. The ship maintains the same heading for 20 miles, and then takes a second sight
on the lighthouse. This time the angle is 32 degrees.

How much farther will the ship travel before it is directly opposite the light-
house? �-----

How far from the lighthouse will the ship be at that time? _____ _

Make a sketch here

'"�:�
�*� � ----=-----

Ship
�

HINT: Set up two separate solutions; one for the 1 6 degree angle and one for the 32
degree angle. Use two variables for the unknowns. Solve the two variables for
one unknown, then solve for that variable first. Then work on the second vari
able.

Solution to the Lighthouse Beacon Problem

Our sketch

Beacon

y = ?

L--�����__;�������=--�-====- c=::J
x = 7 20 mi les

Ship

TRIGONOMETRIC FUNCTIONS 105

y / x + 20 = tan 1 6 y/x = tan 32

On the computer

On the computer

Check of solution

On the computer

(x + 20) *tan 1 6 x*tan 32

x = -20*tan 16
tan 1 6-tan 32

� -20 *TAN 1 6/ (TAN 1 6-TAN3 2))
�
'�������

1-6_. 9_6_
0
_9_6_

1
9
2
�-�

y = x*tan 32

"'- about 17 miles
to travel

�'�1
-6_
._9_6_�_96�1 9_2_. *_

T_A_N_3_
2����-�

�
'�������

1_0_
. _s9_s_3_

s
_
s
_
2
_
s

___ �

y = (x + 20)*tan 1 6

� about 1 0.6 miles
from beacon

�'�(-1_6_._9_60_9_6_1_9_2_+_
2_0_)_*_

T
_
AN
�
1 6��-�

�
'�������

1_0_. s_9_s_3_
s
_
s
_
2
_
s�-�

___Very close

106 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Building Height Problem

A surveyor on the ground sights the top of a building through an angle of elevation
measuring 33 degrees. He then moves back 50 feet and resights the top of the building
at 3 1 degrees. The eyepiece of the transit is 4 feet from the ground.
How high is the building? _____ _

Draw a sketch here

Bu i ld ing 0
0

0
0

Solution to the Building Height Problem

Our sketch:

50 ft. -I

x/y = tan 33 x/y + 50 = tan 3 1

x = Y*tan 33 and 50 TAN 3 1 y = -------
TAN 33 - TAN 3 1

50*TAN 3 l *TAN 33 Therefore, x = -=--��-�--
TAN 33 - TAN 3 1

-t

TRIGONOMETRIC FUNCTIONS 107

On the computer (5 � *TAN3 1 *TAN 3 3) ; (TAN3 3 - TAN 3 1)

This won't all fit on the display, but
after it is typed in you see:

(3 1 *TAN 3 3) /TAN33-TAN3 1) -)
Then, when you press ENTER: /-- Building - transit height J in feet

(4 � 1 . 8 8 2 3.5 74)
40 1 .8823574 + 4 = 405. 8823574

\ __,- height of building

Check of solution
� in feet

y = distance from building to first sight
= x/tan33

On the computer (.._ __
_

4 �

_

1

_

.

_

8

_

8

_

2

_

3

_

5

_

7

_

4

_

/T

_

A

_

N

_

3

_

3

_

_
)

y = x/tan3 1 - 50

(.._ ________ 6
_

1
_
8
_
.
_
8
_
4
_
4
_
5 6

--
1 7

-
� �

(
(

4 0 1 . 88 2 3 5 7 4 /,ANJ l -5,_ �
~

6 1 8 . 84 4 5 6 1 7)
Sighting distance = hypotenuse

= x/sin33

C 4� 1 . 8 8 2 3 5 7 4/SIN3 3)
...__ _

_
__

C 7 3 7 . 8 8 7 5 3 94)
...__ ___ _

both the
same

108 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

hypotenuse = y x2 + y2

y(40 1 .8823574 2 + 6 1 8)84456 1 7 2)

c 7 3 7 . 8 8 7 5 3 9 3)
Both methods check.

River Problem

One surveyor, labeled S1, places a stake on one side of a river. He then walks along the
side of the river to a point 1 25 feet from the stake. He measures an angle of 65 degrees
from the original stake to a second surveyor on the other side of the river. The second
surveyor {S2) measures an angle of 50 degrees from the first surveyor to the stake, X .
How far apart are the two surveyors? _____ _

How far is the second surveyo� from the stake? _____ _

Our solution

1 25 tt. x�

d __,./' Distance from 2nd surveyor
� to stake = d.

s, 1--........1..-------'"" x
1 25 ft.

TRIGONOMETRIC FUNCTIONS 109

A quick solution on the Pocket Computer can be found by arranging the par
tial solutions in this order:

a/ 1 25 = cos65 a = 1 25*cos65 � find a

\
c/a = tan65 c = a*tan65_ then b

\
c/b = tan50 b = c/tan50 - then c

\
b/d = cos50 d = b/cos50 - then d

On the computer (1 2 5 *COS65)
c 5 2 . 8 2 7 2 8 2 7 2) a

Press * and type tan65

(5 2 . 8 2 7 2 8 2 7 2 *TAN65)
c 1 1 3 . 2 8 8 4 7 3 4) c

Press / and type tan50

(1 1 3 . 2884 7 3 4 /TAN5�)
(9 5 . �6� 3 1 6 2 5) b

Press / and type cos50

c 9 5 . �6 � 3 1 6 2 5 /COS 5 �)
(1 4 7 . 8 8 7 5 9 9)

a + b = 52.83 + 95 .06 = 1 47.89 feet apart (two surveyors)
d = 1 47.89 feet (second surveyor from stake)

I IO PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Checks for solutions

ya2 + c2 = 1 25

On the computer (y (5 2 . 8 3 2+ 1 1 3 . 29 2))
C ; 2 5 . �� 2 5 3�

____ /
\ ____ Very close

yb2 + c2= d = 1 47.887599

On the computer (.._

v'
_

<

_

9

_

5

_

.

-

�6
__

2

_

+

_

1

_

1

_

3

_

.

_

29
__

2

_

)
_)

(1 4 7 . 8 885650
\ ____ Close again

Equations for General Triangles

Equations for triangles that have no right angles can be derived from the right triangle
angle/side relationships. Such relationships are given following the sketch of this gen
eral triangle.

B

C�A
b

Sides and angles for the general triangle may be found from the group of equations
called the Law of Cosines and the Law of Sines.

Law of Cosines
a = y b2 + c2 - 2bc cos A
b = y a2 + c2 - 2ac cos B
c = y a2 + b2 - 2ab cos C

Law of Sines
sin A = sin B = sin C

a
-

b- c

TRIGONOMETRIC FUNCTIONS 1 1 1

Here are three different formulas that may be used to find areas of triangles.
Two angles and a side known:

A _ a2 sin C sin(1 80 - (A + C)) rea - 2sin A
Two sides and included angle known:

Three sides known:
Area = V2ab sin C

Area = y's(s - a)(s - b)(s - c)
where s = 1h (a + b + c)

With these equations, you are equipped to solve all kinds of problems involving
triangles. Use your Pocket Computer and the equations on the following problems.

The Inegular Lot Problem

My friend, Jennifer, owns an irregular shaped lot. She has a map that shows the
boundaries and the length of each of the four sides. She wants to advertise the lot as
for sale. However, the wording in her deed is so obscure that she can't make much out
of it. This is the shape of her lot.

1 30 ft.

1 1 3 ft.

85 ft.

Jennifer put stakes at all four corners of her lot and measured the angles. Can
you help her find the area of the lot? Here are the measurements:

1 1 3 ft.

85 ft.

1 1 2 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Solution to Irregular Lot

Here are two ways to solve the problem. Maybe you can think of others. In both solu
tions the lot is divided into two triangles, as shown.

D

Solution I

A c = 85 ft.

Using the lower right triangle first:

Area of .6ABC = Y2ac sin B

= Y2* 1 1 3*85*sin 95

a = 1 1 3 ft.

c

1 1 3 ft.

Computer shows (. 5 * 1 1 3 * 8 5 * SIN95)
(

Use the law of cosines to solve for side b.

b = ya2 + c2 - 2ac cos B

4 784 . 2 2 5 � 3 8)
\.._ ___ Area of .6ABC

= 4784 sq. ft.

TRIGONOMETRIC FUNCTIONS 1 13

Computer shows (y(1 1 3 2+85 2-2* 1 1 3 * 8 5 * COS9 5)
c-
�������-1-4�7�. -2JJ_,_

4
_
3_2 __ 8�

'�------ side b = 1 47 ft.

Then solve for the triangle in the upper left.

a'= 1 30 ft.

A

Use the three sides to solve for the area of .0,ACD.

s = 1/2 (a' + b + c')

Area of .0,ACD = ys(s-a')(s-b) (s-c')

Computer shows c S= . 5 * (1 W+ 1 4 7 + 1 2 5))
c "\.:2_
c (S * (S- 1 3 JJ) * (S- 1 4 7) * (S- 1 2 5))
(7 6 5 2 . 9 8 5 3)

t

S=20 1

Area of .0,ACD = 7653 sq. ft.

Total area of lot = area of .0,ABC + area of .0,ACD
=4784 + 7653
= 1 2437 sq. ft.

1 14 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Solution 2

Area of D.ABC = 1 1 32 (sin 95)(sin (l 80-(49.88 + 95))
2 sin 49.88

Computer shows 1 1 3 2 * S I N9 5 * S IN (1 8� (- (4 9 . 88+95)) / (2 * S IN49 . 88)

��·��-----47_s_
4
_
.
_
s
_
6
_
2_26�--�

t._ ___ Area of D.ABC
=4785 sq. ft.

Solving for side b from Law of Sines:

Computer shows

Angle A'

b
sin B

b=
a sin B
sin A

a
sin A

I 1 3 *sin 95
sin49.88

� 1 1 3 * S I N9 5 /S I N49 . 88 �
(1 4 7 . 2(.?87 2 7 9)

\ _____ side b = 1 47 ft.

a'2 = b2 + c'2 - 2bc'cos A'
cos A' = b2 + c'2 -a'2

2bc'

a'= 1 30 ft.

A

Computer shows

Area of .6.ACD =
lfibc'sin A'

Computer shows

c

c
(

TRIGONOMETRIC FUNCTIONS 1 15

ACS ((1 4 7 /\ 2 + 1 2 5 /\ 2- 1 3)l/\ 2) / (2 * 1 4 7 * 1 2 5))

5 6 . 4)l 5 8 7 6 2 2 �
'------ A' = 56.4 degrees

. 5 * 1 4 7 * 1 2 5 * SIN56 . 4)
7 6 5 2 . 4 6 3 899)

"'--- Area of .6.ACD
= 7652 sq. ft.

Total area of Jot = area of .6.ABC + area of .6.ACD
= 4785 sq. ft. + 7652 sq. ft.
= 1 2437 sq. ft.

Both methods give the same total area.

Width of Lake Problem

A surveyor wants to measure the width of Lake Deep Blue. He does it by measuring
between points A and B, which are on the shore. He sights an angle of 1 05 degrees be
tween the line AB and one end of the lake. He sights an angle of 1 25 degrees between
line AB and the other end of the lake. He also measures from one end of the lake to
point A and from the other end of the lake to point B. Using these measurements, as
shown in the following sketch, and your Pocket Computer; find the width of Lake
Deep Blue.

D

A 350 ft.

. , - !

1 1 6 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Solution 1

First we drew the following diagram, filling in the information given.

Solving for line segment AC, we have:

AC = y'3502 + 1 1 52 - 2(350)(1 1 5)(cos 105)

On the computer (y(3 5 �/\ 2+ 1 1 5 /\ 2 - 2 * 3 5 � * 1 1 5 * COS 1 � 5)
C 3 9 5 . 6 7 6 5 5 1 1) ___ _____.._ '--_ AC = 395.7 ft.

Solve for angle x by using the inverse cosine function.
x =arccos((3502.+ 395.72 - 1 1 52)/(2*350*395.7))
y = 1 25 - x

On the computer ACS ((3 5 � 2 + 3 9 5 . 7 2 - 1 1 5 2) / (2 * 3 5 � * 3 9 5 . 7)

C 1 6 . 3 � 2 1 9 4 5 2) ------
L x = 1 6. 3 degrees

y = 1 25 - 1 6.3 = 1 08.7 degrees

Solve for line segment DC by using the law of cosines.

DC = y1 252 + 395 .72 - 2* 1 25 *395.7*cos 1 08.7

On the computer (v 1 2 5 /\ 2 + 3 9 5 . 7 /\ 2-2 * 1 2 5 * 3 9 5 . 7 * cos 1 � 8 . -0
c 4 5 1 . 5 7 5 1 6 5 5)

t DC = 45 1 .6 ft.

TRIGONOMETRIC FUNCTIONS 1 17

Solution 2 (Check for Solution 1)

DB = y1 252 + 3502 - 2(1 25)(350)(cos 1 25)

On the computer c y' 1 2 5 /\ 2+3 50/\ 2 - 2 * 1 2 5 * 3 5 0 * cos 1 2�
C 4 3 3 . 9 5 0 3 8 6 7)

'---- DB = 433 .95 ft.

z = arccos((3502 + 433 .952- 1 252)/(2*350*433 .95)
w = 1 05 - z

On the computer ACS ((3 5 0 /\ 2 +4 3 3 . 9 5 /\2- 1 2 5 /\ 2) / (2 * 3 5 0 * 4 3 3 . 9 5))

(1 3 . 6 48 1 5 0 2 2 �
\

z = 1 3 .65 degrees
w = 1 05 - 1 3 .65 = 9 1 .35 degrees

DC = y433 .952 + 1 1 52 - 2* 1 1 5*433.95*cos 9 1 .35

On the computer V (4 3 3 . 9 5/\ 2 + 1 1 5 /\ 2 - 2 * 1 1 5 * 4 3 3 . 9 5 * COS9 1 . 3 5)

�
--������

4
-
5
_
1
_
. 5

_
4
_
0
_
7
_
7
_
0
_
3

__,
)

'\.._ ___ DC = 45 1 . 5 ft.

Both solutions give results within 0 . 1 feet.

Radii and Other Measures

Your TRS-80 Pocket Computer measures angles in two ways. The first way is the de
gree measure method that you learned in school. If you type the command DEG. in a
program, the computer will use the degree measure until you tell it to change.

1 18 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

90 DEG

The second way of measuring angles is called radian measure.

3 RAD
P l RAD 0 RAD

Radian measure is used in the mathematical sciences. The radius of the circle is used
as a measuring tape to measure along the arc of the circle. It takes slightly over 3 rad
ius lengths to get halfway around the arc of the circle. In fact, it takes exactly pi =
3 . 1 4 1 59 . . . radius measures to get halfway around the arc of the circle. That's where
pi comes from.

Many beautiful and important formulas from mathematics and science depend
on radian measure. One of the most surprising and important formulas was discovered
by Isaac Newton.

Newton's Sin

Isaac Newton discovered this formula 350 years ago by exceedingly ingenious meth
ods. It relates the SIN (X) function to an unending sum of powers of X .

sin(X) = X /\ 1 / 1 - X/\3/(3*2* 1) + X/\5/(5*4*3*2* 1)
- (you can guess the next terms)

· The Pocket Computer should be ,set to the RAD measure for angles before com
puting SIN(X). Just put the command RAD. as a program line. Now that you know
so much about this wonderful formula, perhaps you'd like to check that it really works.
Write a program that takes the number X as input and computes the partial sum out
to the term X/\2 1 /(2 1 *20* . . . *2* 1) . The program should print out both SIN(X) and
S.

TRIGONOMETRIC FUNCTIONS 1 1 9

Hint to Newton's Sin

The chief difficulty is the long and complicated sum S. S has too many terms to fit
onto one line. What to do? An accumulator saves the day. We can start S empty, and
then keep adding new terms into it.

S=O
S=S + X
S=S - X/\ 3/(3*2* 1)

And so on, until done. Can we use the pattern of the formula to make the job easier?
Each new term can be gotten from the one before it.

Solution to Newton's Sin

Here is the crude but simple version:

1 0 RAD
20 S=0
30 I NPUT X
40 S=S + X
5 0 S=S - X/\ 3 / (3 * 2 * 1)
60 S=S + X /\ 5 / (5 * 4 * 3 * 2 * 1)
7 0 s=s - x/\ 7 / (7 * 6 * 5 * 4 * 3 * 2 * 1)
ETC
1 4 0 S=S + X/\ 2 1 (2 1 * 2 0 * 1 9 * ETC * 2 * 1)
1 5 0 P R I NT S I N (X) , S
1 6 0 GOTO 1 0

You may have noticed a few ETCs scattered about the previous program. It is a
bit long and cumbersome. Let's see if we can avoid writing all those lines. Observe that
each new term differs only slightly from the term before it. The sign changes. The
power of X increases by 2. The denominator gets 2 more factors.

Suppose we had gotten as far as the order 3 term -x/\ 3 / (3 * 2 * 1) • To get the next
term, we multiply by - 1 *X*X and divide by 4 and by 5. We get +x/\ 5 / (5 * 4 * 3 * 2 * 1) .

Here is a program based on this observation:

1 0 0 ' ' TOP ' '
1 1 0 RAD . : REM * * REM SET RAD MODE
1 2 0 S=0 : REM ** START ACCUMULATOR
1 3 0 N= 1 : REM * * S TART EXPONENT COUNTER
1 4 0 I NPUT X
1 5 0 T=X : REM * * F I RST TERM I S X

2 0 0 ' ' ADDTERM ' '
2 1 0 S=S+T
2 2 0 N=N+ 2 : REM ** I NCREMENT EXPONENT
2 3 0 REM : CHECK IF DONE
2 4 0 IF N> 2 1 THEN ' ' PR I NT ' '
2 5 0 T=T* (- 1) * X * X / (N * (N- 1))
2 6 0 GOTO ' ' ADDTERM ' '

3 0 0 ' ' PRINT ' '
3 1 0 P R I NT S I N (X) , S
3 2 0 GOTO ' ' TOP ' '

1 20 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Square Wave

The SIN and COS functions on your Pocket Computer are remarkably useful. The
numbers they generate can be used to describe the vibration of strings, oscillations in
electric lines, and other such matters. If you've never watched the sin numbers oscil
late, then here is your chance. Try this little program and watch the Y numbers rise
and fall as T(time) changes.

1 � DEG : REM * * SET DEGREE MODE
2� T=�
W T=T+ 1 �
4 � Y=S I N (T)
5 � PAUSE Y
6� GOTO 3 �

You can make the number oscillate twice as fast by changing line 40 to this:

4� Y'=S I N (2 * T)

The frequency of the oscillations has now doubled.

The great scientist Baron Jean Baptiste Joseph Fourier discovered an amazing fact
1 50 years ago. He found that any kind of changing number pattern can be built by
adding sin and cos functions together. Here is an example of such a function built out
of SIN functions of various frequencies:

Y = sin(l *T)/ 1 + sin(3 *T)/3 + sin(5*T)/5 + sin(7*T)/7 + (You can guess the rest)

The numbers (Y) th�t are generated by this complicated formula are surprising.
Write a program which takes T as input and then computes and prints Y. Since the
formula goes on forever, it is best to stop somewhere. Compute the sum of the terms
out to SIN(99*T)/99.

Hint to Square Wave

It looks like an accumulator is needed to collect the terms. The general term has this
form:

s i n (N*T) /N

Where N increases by two each term. Would a FOR-NEXT loop do it?

TRIGONOMETRIC FUNCTIONS 121

Solution to Square Wave Problem

1)'.! RAD I AN
2)'.! Y=)'.!
30 I NPUT T
4 0 FOR N= 1 TO 99 STEP 2
5 0 Y=Y+S I N (N * T) /N
60 NEXT N
7 0 PRINT Y
80 GOTO 1 0

The numbers are surprising. You might have expected that the numbers would vary
widely. In fact, they vary hardly at all . If you graph the numbers, you will get a square
wave that looks like this:

y t

j l· I '!' T - J2� ---

What Fourier discovered was that by putting SIN and COS functions together in the
previous way, it is possible to get any function, with any graph. This lies at the heart of
modern communication and systems analysis.

Summing up Chapter Five

Trigonometric functions were used in this chapter to solve problems involving angles
and sides of geometric figures.

Pocket Computer Trigonometric Functions

Function Accepted Remarks
Abbreviations

SIN SI. Side opposite an angle
hypotenuse

cos - Side adjacent to an angle
hypotenuse

TAN TA. Side opposite an angle
Side adjaq:nt to an angle

ASN AS. The angle whose sine is
specified

ACS AC. The angle whose cosine is
specified

ATN AT. The angle whose tangent is
specified

1 22 PROBLEM-SOLVING ON THE tRS-80 POCKET COMPUTER

Note: Periods in abbreviations must be included.

Other new items:

Angle Accepted Remarks
Measure Abbreviations

DEGREE DEG. An angular measure = 1 /360 of
DEGR.
DEGRE.

RADIAN RA.
RAD.
RADI.
RA DIA.

GRAD GR.
GRA.

Equations used:

• Law of Cosines:
·--------

a = yb2 + c2 - 2bc cos A

b = ya2 + c2 - 2ac cos B

c = ya2 + b2 - 2ab cos c

• Law of Sines:
sin A

a

• Areas of triangles:

a circle

An angular measure. One radian
is the angle which intercepts an
arc equal to the radius of the
circle.

An angular measure equal to
1 / 1 00 of a right angle (0.9 degree)

sin B sin C

b c

Two angles and a side known:

A _ a2sin C sin(1 80 - (A + C)) rea- 2 sin A

Two sides and included angle known:
Area = Yzab sin C

Three sides known:

Area = ys(s-a)(s-b)(s-c)
where s = Y2(a + b + c)

TRIGONOMETRIC FUNCTIONS 123

Chapter Five Self-Test

1 . A year-round garden is to be planted near a retaining wall, 8 feet tall. On Decem
ber 2 1 , the shortest day in the year, the angle of elevation of the sun at 5 PM is
1 8 .5 degrees. A shadow from the retaining wall is cast toward the garden. We
want to keep the sun on the garden as long as possible. To keep the sun on the gar
den until 5 PM of December 2 1 , how far east of the retaining wall should we plant
the garden? _____ _

w

s

2. A ship sails due west for 1 20 miles from San Diego. Then it changes direction 24. 7
degrees, from west to south. It sails 75 miles in the new qirection. At that time,
how far is it from San Diego? _____ _

Draw sketch here.

1 24 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

3 . The angle of depression from the top of a building (point A in the figure) to point
C is observed to be 63 degrees. From a window four floors (36 feet) directly below
point A, the angle of depression is 55 degrees to point C. How high is the build-
ing? _____ _

A

36 ft{
?

4. A farm, bounded by two roads, has the following dimensions:

550 ft.

TRIGONOMETRIC FUNCTIONS 125

A new road is going to cross the farm, as shown here:

What are the areas of the two remaining parts of the farm after the new road goes in?

Area of 6A = _____ _

Area of .6B = _____ _

Answers to Chapter Five Self-Test

1 .

2.

"'� 18 .5°

� = tan 18 .5°

x

On the computer c 8/TAN 1 8 . 5)
�-����---2-3 ___ 9_�_9_4_7_9_7 ___

�
The garden should start at least 23 .9 feet from the wall.

1 20 mi les

Angle X = 1 80 - 24.7 = 1 55 .3°
Distance from San Diego =

1 26 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

3 .

On the computer (y(7 5 /\ 2 + 1 2 f.l /\ 2 - 2 * 7 5 * 1 2 f.l * COS 1 5 5 . 30
(1 9f.l . 7 3f.l 5 6 1 6 �

The ship is approximately 1 9 I miles from San Diego

On the computer

c = 1 80 - (1 45 + 27) = 8 °

36 x

sin 8 sin 27

y
= cos 35°

x

(3 6 * S I N 2 7 /S IN8 �
(1 1 7 . 4 3 40 2 9 1)

\..._ ____ x

Type *COS35

(96 . 1 96 3 2 5 (.l l J
,,,_ ___ _ y

The height of the building is 36 + 96 = I 32 feet

4. From the original farm:

550 ft.

500 ft.

side x = y4002 + 5002 - 2(400) (500)(cos 1 1 5)

On the computer

TRIGONOMETRIC FUNCTIONS 127

(________

1

_

6

_
P

_

. 9

_
s
_

1

_
s
_

1

_

s

_

4
_�

)
X = 76 1 feet

Solving for the semiperimeter of .6.A, we have

s = lf2(700 + 550 + 76 1) = 1 005.5 feet

Area of .6.A = ys(s - 700)(s - 550)(s - 76 1)

On the computer y (1 PP 5 . 5 * (1 p p s . 5-7PP > * (1 pps . 5 -5 5P) * (1 pps . 5-76 1))

c
Area of .6.A = 1 8496 1 sq. ft.
The area of triangle B is found next.
Area of .6.B = lf2(475)(375)(sin 1 1 5)

1 8496 1 . P4 3 6)

On the computer � . 5 * 4 7 5 * 3 7 5 * S IN 1 1 5)
Area of .6.B = 807 1 8 sq. ft. (

s
_
p 1

_
1
_

s
_

.
_
P
_
3
_
1
_
2 s

)

CHAPTER SIX

Operation Time, Logic Functions, and
Binary Bins

To get the most efficient use of your Pocket Computer, you should investigate the time
it takes to perform its many operations. The early part of this chapter is devoted to
timing events that take place in the computer.

Quite often, a programmer would like his or her program to deviate from its nor
mal sequence of execution when the outcome of two or more separate events take on
certain conditions. By using the outcome of certain logic functions, this can be done.
We will show you how to program some logic functions that are not built into the
Pocket Computer.

Finally, we will discuss the binary number system and some of its characteris
tics. There is a clo�e connection between logic functions and binary numbers.

Jn this chapter you will learn:

• to time Pocket Computer BASIC statements as they are performed;
• to shorten problem solution time by careful choice of methods and varia

bles used;
• to use the Pocket Computer logic statements, and some others that you can

program;
• how to use the binary number system with its relationship to logic.

Operation Time

How fast is the TRS-80 Pocket Computer? The only way to find out is to have it do a
task and time how long it takes. But short tasks are completed so fast that you can't
distinguish between the start and the end of the task. To help out, you can put a BEEP
at the beginning of the program that performs the task and put another BEEP at the
end of the program. Try timing this program which adds two numbers and stores the
result between BEEPS.

1 0 BEEP (1)
2 0 x = 2+3
3 0 B E E P (1)

OPERATION TIME, LOGIC FUNCTIONS, AND BINARY BINS 1 29

Did it go by too fast to time? The BEEPs take longer than the addition.
You can slow the computer down by making it do the same task 500 times. Try

the following program. Use a clock with a second hand to measure how long it takes
the computer to run through the empty FOR-NEXT loop 500 times. The FOR-NEXT
loop is called "empty" because the computer doesn't do a·nything between the FOR
statement and the NEXT statement. (We are going to use this fact later to get time
statements that we insert in the loop.) The FOR-NEXT loop will then no longer be
empty. Time the following program from the first BEEP to the second BEEP.

Notice: we 1 0 BEEP (1)

left out 2 0 FOR x = 1 TO 500
--------......- 4 0 NEXT X line 30 50 BEEP (1)

We purposely skipped line 30. After we establish the running time for the empty loop,
we'll insert some other statements that we want to time.

How many seconds does it take the computer to run the FOR-NEXT loop 500
times? _____ _

We measured 90 seconds between BEEPs.
Each second is equal to I 000 milliseconds. If it takes 90 seconds to do 500 empty

FOR-NEXT loops, how many milliseconds does it take to do a single loop?

Ours took: 90 X I 000 = J 80 milliseconds/loop
500

Now, replace X in the previous program with the variable, A.

1 0 BEEP (1)
2 0 FOR A = 1 TO 500

Change ---------4 0 NEXT A
5 0 BEEP (1)

Run the revised program and time it again. What happened? It took longer this
time. Why should the computer slow down when A is used instead of X? How long be-.
tween BEEPs this time? _____ _

Ours took 1 1 6 seconds this time, or 232 milliseconds per loop.

130 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Remember, variables A through Z are assigned to the 26 fixed memories in this
way: (See Chapter 2 for a refresher if needed.)

A to memory 1
B to memory 2
C to memory 3

X to memory 24
Y to memory 25
Z to memory 26

The TRS-80 Pocket Computer searches for the variables from the last (Z) to the first
(A). Therefore, it takes less time to access the variable X than the variable A. You
should remember this if you wish to speed up programs that access a variable many
times.

Use letters at the end of the alphabet for variables that
are often accessed in a program.

Go back to X as the variable in our timing program and find out how Jong it
takes to load a number into the memory assigned to the variable A.

1 YJ BEEP (1)
2 YJ FOR X = 1 TO SYJYJ
3 YJ A = 1 ------------
4YJ NEXT X
S YJ BEEP (l)

store 1 into A 500 times.

Remember, it took approximately 1 80 milliseconds to execute the FOR-NEXT
loop when there was no other operation taking place. Now we have one operation (A =
I) inside the loop. It took 90 seconds to perform the empty FOR-NEXT loop 500
times. Now you'll see how long it takes when one operation is added. Run the program
and time it.

a . How Jong did it take between BEEPs? _____ _

b. 500 empty FOR-NEXT loops took _____ _

c. Therefore, placing I into memory A 500 times took _____ _

OPERATION TIME, LOGIC FUNCTIONS, AND BINARY BINS 131

d. To place I in memory A once took _____ _

a. 1 29 seconds
b. 90 seconds

c. 39 seconds for 500 stores

d. 39 X 1 000= 78 milliseconds to assign I to A

500

Now let's see how long it would take to do the same thing in memory location Z.
Change line 30 from:

A = 1 to 30 Z = 1
Run the program again and time it.

a. What is the total time between BEEPs? _____ _

b. What is the total time for 500 operations of Z = 1 ? _____ _

c. Time for one operation of Z = 1 ? _____ _

a. 1 2 1 seconds between BEEPs
b. 3 1 seconds for 500 operations
c. 62 milliseconds to assign Z = 1

Here again, you see that the computer can work with variables at the end of the
alphabet faster than it can with variables at the beginning of the alphabet.

Which arithmetic operation can be performed fastest (addition, subtraction,
multiplication, or division)? To find out, change line 30 of the program, time the
FOR-NEXT loop, and compute the time for each operation, as before.

Line 30 500 loops empty loop 500 operations one operation

30 z = 3 + 2 90

30 z = 3 - 2 90

30 z = 3 *2 90

30 Z = 3/2 90

1 32 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Using the previous technique, time the following operations. Fill in the table with the
time, in milliseconds, for each operation. You know the answers to the first five opera
tions from the previous experiment.

TIME TABLE

Operation Time (milliseconds)

Z = l

Z = 3 + 2

Z = 3 - 2

z = 3 * 2

Z = 3/2

z = (2<3)

GOSUB I 00 . . . RETURN

GOT0 40

Z = SIN I (rad.)

Z = COS 1 (rad.)

Z = TAN I (rad.)

Z = Vf
z = 21\3

Z = LOG I
Z = EXP I
IF O THEN I

Operation

Z = l
Z = 3 + 2
Z = 3 - 2
z = 3*2
Z = 3/2
z = (2<3)

OPERATION TIME, LOGIC FUNCTIONS, AND BINARY BINS 133

TIME TABLE

Time (milliseconds)

62
92
92
1 02
1 24
1 20

GOSUB l 00 . . . RETURN 2 1 2
GOT0 40 72
Z = SIN l 622
Z = COS l 620
Z = TAN l 466
Z = y'f 1 1 6
z = 2/\3 326
Z = LOG l 1 70
Z = EXP l 250
IF O THEN l 60

Problem # 2
·
All of the questions below relate to the speed of your computer's operation.

a. Which computation would run faster: 2*2*2*2*2 or 2/\5?

b. Does the size of a number affect how fast addition or multiplication oper-
ations are performed? ___ _

If so, how?
c. Which takes longer, GOTO l or GOTO 1 00? _____ _

d. How long does it take to fill memories 31 through 80 with the number l ?

e . Which works faster, y'3or 3/\.5? _____ _

f. Which works faster, 1 /3 or 3/\- l ? _____ _

a. 2*2*2*2*2 is faster
b. Yes

The larger the number, the slower the operation is performed.
c. GOTO l 00 takes longer
d. 46 to 47 seconds, using a FOR-NEXT loop
e. y'T is faster
f. 1 /3 is faster

134 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Logical Comparisons

There will be times when you will want to check whether a number is big enough, or
small enough, to perform a specific operation. There will also be times when you will
want to check whether two strings are the same. The Pocket Computer has several log
ical comparison functions for this purpose. These functions compare numbers, or
strings, for size or equality. If the condition is met, then the value of the function is
equal to 1 . If the condition is not met, the value of the function is equal to 0.

Here are a few logical comparisons. Write down what you think the value of
each expression will be (0 or 1) . Write 0 if the statement is false. Write 1 if the state
ment is true.

1 . 3 = 2
2. 2 = 2
3 . 4 < 5 (4 is less than 5)
4. 2 < 1
5. 5> 1 (5 is greater than 1)
6 . 7 > 9
7. 3 > 2 (3 is greater than or equal to 2)
8 . 5 < 5
9. 4 < > 5 (4 is not equal to 5)
10. 4 <> 4
1 1 . (2 < 5) < (5 > 2)
12 . What would this do? IF (3 > 2) PRINT "GREATER THAN"

1 3 . How is A related to (A = O) ? _______________ _

14. What would PRINT (5 = 3) do?

· 1 . 0 (since 3 = 2 is false)
2. 1 (since 2 = 2 is true)
3. 1 (since 4 is less than 5)
4. 0 (since 2 < 1 is false)
5. 1 (since 5 is greater than 1)
6 . 0 (since 7 > 9 is false)
7. 1 (since 3 is greater than, or equal to, 2)
8. 1 (since 5 is greater than, or equal to, 5)
9. I (since 4 is not equal to 5)

I 0. 0 (since 4 < > 4 is false)

OPERATION TIME, LOGIC FUNCTIONS, AND BINARY BINS 135

1 1 . 0 Let's take this one in pieces.
(2 < 5) has a value of I (it is true)
(5 > 2) has a value of I (it is true)
(2 < 5) < (5 > 2) has the same value as 1 < 1 which is false. Therefore, the

complete expression is false and has value 0.
1 2. This prints GREATER THAN (since it is true that 3 > 2)
1 3 . If A = 0, then (A = 0) is true - takes the value of 1 .

IF A = 1 , then (A = 0) is false - takes the value of O.
In either case, the value of (A = 0) is the opposite of the value of A.

14. 0 (since (5 = 3) has a value of O)

The Truth and Nothing but the Truth

Here are two problems involving the logical comparison functions AND and OR. The
A ND function will be true only if the two conditions being ANDed are both true. Oth
erwise the value of the AND function is false. The OR function will be true if either
one of the conditions being ORed is true (or both are true). It is false only when both
conditions are false.

Problem # 1

Write a program which takes the values of A and B as input. In each case, the pro
gram is to print the corresponding output values (A AND B). Don't use any BASIC
statements except INPUT, PRINT, GOTO, and the logical operators < , > , and = .

Case 1

Case 2

Case 3

Case 4

1 13 INPUT A , B
2 13 PRINT (A 13) < B
3 13 GOTO . 1 13

Inputs Output
A B A AND B

0

0

I

I

0 0

I 0

0 0

I I

I D-������������

20_������������

30 _������������

136 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Problem # 2

Write a program which takes the values of A and H as inputs and prints out the value
of the logical function A OR B. Use the same BASIC statements and operators as in
Problem # l .

Case 1

Case 2

Case 3

Case 4

1 jil I NPUT A , B
2 (J PRINT (A> B) < > B
3 jil GOTO 1 jil

Binary Bins

Inputs Output

A B A OR B

0

0

1

1

0 0

1 I
0 1

1 1

1 0������������
20 ������������
30������������

One of the things that computers are reputed to be good at is counting in the binary
number system. This is because they are constructed to work with binary numbers. In
fact, that's the only kind of numbers that the computer can work with. Someone else
had to write an interpreter to interpret BASIC commands and decimal numbers into
binary language that it can understand.

Here are the first few positive numbers in binary notation.
0, 1 , 1 0, 1 1 , 1 00, 1 0 1 , 1 1 0, 1 1 1 , 1 ,000, . . . etc.

If your car had a binary odometer, it would work just like the binary counter that we
will construct a little later by a computer program. First, though, Jet's talk a little
more about binary numbers.

You could make a binary counter using stones and boxes.

Line up eight boxes in a row.

7 6 5 4 3 2 o�
each box numbered (computer

... 1 _ l_ l _ _._I _ _.l'-__.l _ _._l _ _._I _ _.I ���Kl:
e
��� to Start numbering

OPERATION TIME, LOGIC FUNCTIONS, AND BINARY BINS 137

Put a stone in the first box.

I I I I I I I I * I
7 6 5 4 3 2 0

That's one stone counted. Now binary boxes hold, at most, one stone. Suppose you
wanted to count another stone: There's no room in the first box. That's OK. The next
box to the left counts twice as much as the first box. The rule is this:

If any box already contains a stone, arid you are trying to
put another stone into the box, DON'T. Instead, empty
that box and carry one stone over to the next box on the
immediate left.

Sounds like fun, doesn't it? Here's how the boxes . look as two stones are counted.

* I I I I I I I I * I I I I I I I I * I I
7 6 5 4 3 2 7 6 5 4 3 2 1 0

L �is is how it s:ld look

0

NO, NO! Not this _____ _,t
The second box counts for two. To count three things is easy. Just add another

store. There is room for it in the first box. Always work from right to left. If a box is
empty, you can put in a stone. If it has a stone in it, empty it and take a stone to the box
on the immediate left.

·1 I I I I I
7 6 5 4 3 2 0 a two and a one equal three

What happens if you try to count a fourth thing? You try to add another stone to
the first box. No room - there's already a stone there. Rememb�r the rule, empty
that box and carry one stone to the next box on the left. But the next box is full . Empty
it and carry one stone to the next box on the left. There is room this time. Put the stone
in that box. Here is how the final result for four things looks.

I I I I I I * I I I
7 6 5 4 3 2 0

this box is for four things

If we let 00000 stand for 5 empty boxes and 1 1 1 1 1 stand for 5 full boxes, then
what number does 1 1 1 1 1 represent? If you said 3 1 , then you know how to count in the
binary number system.

138 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Binary Counter Problem

Write a program which prints out the binary numbers in order. The output should look
like this:

00000
0000 1
000 1 0
000 1 1

and so on until

1 1 1 1 1

Hint 1 to Binary Counter

The brute force method is to write out a series of 32 PRINT statements, one for each
number. You can be cleverer than that. The first thing that you need to do is decide
where to store the 5 binary digits. Let's store them in memories A, B, C, D, and E.

When you start, a l l the memories will contain 0 .
0 0 0 0 0
A B C D E

To set the next number, you can add 1 . Since E = 0, you can set E = 1 and print the re
sult. You might write this in BASIC like this:

IF E = 0 LET E = 1 : GOTO "PRINT

The line labeled "PRINT" will do the obvious thing and print the result. The memo
ries A, B, C, D, and E would now look like this:

0 0 0 0 1
A B C D E

Next, repeat th6 process and add 1 to get the next number. To do this, check E. It is al
ready equal to 1 . Remember the binary counter rule: Change the 1 to 0 and carry a 1
to the box to the left. Here is how the process might look in BASIC:

IF E = 0 LET E = 1 : GOTO "PRINT"
IF E = 1 LET E = 0
IF D = 0 LET D 1 : GOTO "PRINT"
IF D = 1 LET D = 0
and so on

Using this procedure, write a program to count and print from 00000 to 1 1 1 1 1 .

a . 1 0�������������

20 �������������
30������������-

40 ������������
50�������������

60������������

a.

OPERATION TIME, LOGIC FUNCTIONS, AND BINARY BINS 139

70 ����������

80 �������������-

90 ������������-
1 00 ������������-

1 1 0 ������������

1 20 �����������

1 30 �����������

1 (.J A = Ji! : B = Ji! : c = Ji! : D = Ji! : E
2 jil ' ' PR I NT ' '
3 jil PRINT A ; B ; C ; D ; E

= Ji!

4 jil I F E Ji! LET E 1 : GOTO ' ' PR I NT ' '
S jil I F E 1 LET E Ji!
6jil I F D Ji! LET D 1 : GOTO ' ' PR I NT ' '
7 ji! I F D 1 LET D Ji!
8 jil I F C Ji! LET c 1 : GOTO ' ' P R I NT ' '
9 jil I F c 1 LET c Ji!

1 jiljil I F B Ji! LET B 1 : GOTO ' ' PR I NT ' '
1 1 (.J I F B 1 LET B Ji!
1 2 (.J I F A Ji! LET A 1 : GOTO ' ' PR I NT ' '
1 3 (.J I F A 1 END

You might use PAUSE here

Notice pattern in the program. Lines 40 and 50 look much like lines 60 and 70,
lines 80 and 90, and lines 100 and 1 10 . You can make the pattern more explicit by us
ing subscripted variables. Let's change the names of the variables from A, B, C, D,
and E to A(5), A(4), A(3), A(2), and A(l) .

With these changes you can use a FOR-NEXT loop to simplify the program.
Lines 40 to 1 1 0 can be replaced to shorten the program to:

1 jil A (1) = Ji! : A (2) = Ji! : A (3) = jil : A (4) Ji! : A (S) (.J
2 jil ' ' PR I NT ' '
3 jil P R I NT A (5) ; A (4) ; A (3) ; A (2) ; A (1)
4 jil FOR Z = 1 TO 4
S jil I F A (Z) Ji! LET A (Z) 1 : GOTO ' ' P R I NT ' '
6 jil I F A (Z) = 1 LET A (Z) = Ji!
7 jil NEXT Z

Hint 2 to Binary Counter

Here is another method that you might use. Notice that adding 1 at the right-most
digit starts a process of adding and carrying that procedes to the left. For example,
suppose you wish to add a number X = 1 to the binary number 1 0 1 1 1 .

1 0 1 1 1
1 --x = 1

? ? ? ? ?

140 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

You get a digit of the result and possibly a carry to the left. That means you perform a
similar addition of X = 1 to the next digit to the left.

1 0 1 1 1

__ 1_� the carry
? ? ? ?O 1 + 1 = 1 0 \ the result of first digit

This add and carry process procedes to the left until you reach some position for which
there is no carry. If there is no carry, then you are done.

At each stage in this process, you compute two numbers: the digit of the result
and the digit of the carry. Look at the process using the notation of the first solution.

Suppose A(5), A(4), A(3), A(2), and A(l) represent the digits of a counter. Let
X represent the carry. Initially, as you begin the process of incrementing the counter,
x = l .

A(5) A(4) A(3) A(2) A(l)
x

A(15) A(1 4) A(1 3) A(1 2) A(l 1)
?

You want to compute A(1 1) and a value for X to carry to the left. If A(1) and X have
the same value, then A(l 1) = 0. If A(1) and X have different values, then A(l 1) = l .
We can say it this way in BASIC:

-

I F A (l) = X LET A (1 1) = �
I F A (1) <> X LET A (1 1) = 1

Write a program for a binary counter based on these hints_ Use a FOR-NEXT
loop to keep things moving.

a. 1 0 �������������
20 ___________ _

30�������������

40 ___________ _

50������������-
60�------------
70 �������������
80�������������

a.

OPERATION TIME, LOGIC FUNCTIONS, AND BINARY BINS 141

90����������

1 00 ___________ _

1 1 0 ___________ _

1 20-���������-

1 30 _���������-
140_���������-

· 1 50 ___________ _

1 60 ___________ _

1 70 ___________ _

REM S ET COUNTER TO 0

You may not need
this many lines,
but we like lots
of remarks

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

FOR Z= 1 TO 6 : A (Z) =0 : A (Z + 1 0) =0 : NEXT z ----- Really cramming
it in

1 0 0
1 1 0
1 2 0
1 3 0
1 4 0
1 5 0
1 6 0
1 7 0

' ' PR I NT ' '
x = 1
PAUSE A (5) ; A (4) ; A (3) ; A (2) ; A (1)
FOR Z = 1 TO 6

I F A (Z) = X LET A (Z+ 1 0) 0
I F A (Z) < > X LET A (Z + 1 0) = 1
X = X *A (Z)
I F X = 0 LET Z = 6 : REM EX I T THE LOOP

NEXT Z
REM TRANSFER RESULT A (Z+ 1 0) TO A (Z)
FOR Z= 1 TO 6 : A (Z) =A (Z+ 1 0) : NEXT Z
REM CHECK I F DONE
IF A (6) = 1 END
REM GO DO IT AGA I N
GOTO ' ' PR I NT ' '

Your program may be quite different
from this. Try yours and see if
it counts correctly. If it does,
your program is OK.

Here is yet another solution. By a judicious use of the logical comparison func
tions, you can simplify the program a bit more. This last solution is written in the form
of a subroutine called "COUNTER". The subroutine is initialized in line 20. It re
turns the binary digits in memories A(6), A(5), A(4), A(3), A(2), and A(l) . When all
the memories A(l) through A(5) are full, A(6) will equal 1 .

1 0 REM I N I T I AL I ZE ' ' COUNTER ' '
2 0 FOR Z = 1 TO 6 : A (Z) = 0 : NEXT Z
3 0 ' ' PR I NT ' '
4 0 PAUSE A (5) ; A (4) ; A (3) ; A (2) ; A (1)
5 0 GOSUB ' ' COUNTER ' '
6 0 I F A (6) = 1 END
70 GOTO ' ' PR I NT ' '

2 0 0 ' ' COUNTER ' '
2 1 0 x = 1
2 2 0 FOR Z = 1 TO 6
2) 0 W = (A (Z) < > X) : X = X * A (Z)
2 4 0 A (Z) = W
2 5 0 I F X = 0 LET Z = 6
2 6 0 NEXT Z
2 7 0 RETURN

---. . �

142 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Why Binary Numbers Are Useful

What are binary numbers good for? For one thing, computers use them, and an under"
standing of binary numbers help you understand how computers operate. But there is
another reason why binary numbers are useful . For example, suppose you have four
flavors: salt, sweet, sour, and bitter. You want to experiment by adding various combi
nations of the flavors to bread dough to see how it tastes. You might try salt and sour,
or you might try sweet, sour, and bitter. You might even leave them all out, or put
them all in.

How many different ways are there to mix the four flavors? The answer is not
obvious. Did you say 1 6? One way to see that there are 1 6 different combinations of
the four flavors is to notice that each binary number from 0000 to 1 1 1 1 could repre
sent a selection of the four flavors. The number 0000 represents the case where all the
flavors are left out. The number 1 1 1 1 represents the case where all the flavors are
added. The number 1 100 could represent the case where salt and sweet are added. For
each possible combination, there is a binary number, and for each binary number
there is a unique combination. There are 16 binary numbers between 0000 to 1 1 1 1 in
clusive, and there are 1 6 combinations of flavors.

Binary Bread Problem

Write a program to print all the 1 6 possible combinations of the flavors salt, sweet,
sour, and bitter.
H int: You can count in binary and use the binary number as printing directions. For

example, the number 10 10 would tell you to print SALT,BITTER. You will
need memory space for the four binary digits. Store them in A(4), A(3) , A(2),
and A(l) . You will also need some memories to store the four flavor names. Use
A$(1 4) , A$(1 3) , A$(1 2) , and A$(1 1) to store the flavor names.

a. 1 0
20
30
40
50
60
70
80
90

100
1 1 0
1 20
1 30
140
200 "COUNTER"

. OPERATION TIME, LOGIC FUNCTIONS, AND BINARY BINS 143

(Insert the "COUNTER" subroutine
from the previous program here.)

a. 1 0 REM I N I TIALIZE ' ' COUNTER ' '
2 0 FOR Z = 1 TO 6 : A (Z) = 0 : NEXT Z
3 0 x = 1

4 0 A$ (1 4) = ' ' SALT ' ' : A$ (1 3) = ' ' SWEET ' ' : A$ (1 2) = ' ' SOUR ' ' : A$ (1 1) = ' ' B ITTER ' '
5 0 GOSUB ' ' COUNTER ' '

60 REM CHECK IF DONE
7 0 I F A (5) = 1 END

80 REM PRINT CHOSEN FLAVORS
9 0 F O R Z = 1 TO 4

1 0 0 I F A (Z) 1 PAUSE A$ (Z+ 1 0)
1 1 0 NEXT Z

1 2 0 BEEP (1)

1 3 0 REM GO DO I T AGAI N
1 4 0 GOTO 5 0

2 0 0 ' ' COUNTER ' '
2 1 0 x = 1
2 2 0 FOR Z = 1 TO 6
2 3 0 W = (A (Z) < >X) : X X * A (Z)
2 4 0 A (Z) W
2 5 0 I F X = 0 LET Z 6
2 6 0 NEXT Z
2 7 0 RETURN

Summing up Chapter Six

The TRS-80 Pocket Computer performs some operations faster than others.

• Variables near the end of the alphabet are accessed quicker than those at
the beginning of the alphabet.

• Some operations are faster than others that produce the same results. For
example:

2*2*2*2*2 is faster than 2 • 5
However, 2/\5 is quicker to enter in a program.

• Programs and problems in this chapter have given you a better under
standing of the speed with which various operations are performed.

'' ' '·�, - ',"'1'!

144 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

• Some logic functions were introduced, as shown in this table.

Condition Use Result

Equal (A)=(B) 1 if A=B; 0 if A :;t: B

Greater (A)> (B) 1 if A>B; 0 IF A<B
than

Less than (A) <(B) 1 if A<B; O if A>B

Greater (A) >=(B) 1 if A>B; O if A<B
than or
equal to

Less than (A) <=(B) 1 if A<B; 0 if A>B
or equal to

Not equal to (A) < >(B) 1 if A :;t: B; 0 if A=B

Not A (A=O) 1 if (A=O) is false;
b if (A=O) is true

OR (A> B) < > B 1 i f A or B (or both) i� true;
0 if A and B are both false

AND (A=O) <B 1 . if A and B are both true; ·

0 otherwise

Exclusive A<>B. I if A or B (but not both) is true;
OR 0 otherwise

NOR A<(A=B) 1 if neither A nor B is true;
0 otherwise

• Binary numbers are formed from the symbols I and 0.
• Binary place values are powers of 2.

;· ' ;'

CHAPTER SEVEN

Feedback a�d Systems

This chapter centers around problems that grow on themselves. We all know that
money doesn't grow on trees, but it does grow in banks. We are most concerned here
with how fast it grows. Other things grow too, either larger or smaller. Our weight
changes, the temperature changes - life is full of changes. In this chapter, you will
learn:

• to compute the growth of money in banking;
• to predict school class growth;
• to compute weight changes from energy expended and calorie intake;
• to compute the result of several variables that affect a single event;
• to compute the result of feedback in closed systems; and
• how changing variables may lead to constant results.

Multiplier Effect Problem

The banker in our town has a good thing going. If I deposit $ 1 00 in his bank, the
friendly banker puts $20 in the vault and loans out the remaining $80 to someone else,
meanwhile collecting a bit of interest for his trouble. Actually, things get even better
for the banker. When that $80 is loaned out, it goes to someone in town. What is there
to do with money in a small town? Take it to the bank, of course - giving the joyful
banker a new deposit of $80. You know what the banker does now; deposits 20% ($ 1 6)
in the vault and loans out 80% ($64) to someone else. Where does the $64 go? You
guessed it; right back to the bank. The process is repeated again and again. The ques
tion is this: After sufficient time has gone by, how much will be in the vault, and how
much will have been loaned out?

Hint to Multiplier Effect Problem

There are three numbers that will need to be stored; the amount in the vault, the total
amount loaned, and, of course, the $ 1 00 that is the new deposit.

146 PROBLEM-SOLVING ON THE TRS-80 POCKET COMRUTER

Store the amount in the vault at memory Z, the total amount loaned out at mem
ory Y, and the new deposit at memory X. At each step in the process take 20% of the
deposit and add this to the vault. Take 80% of the deposit and add it to the total loaned
out, and also store it as the new deposit.

Solution to Multiplier Effect

1 5 REM THE I N I T I AL AMOUNT I N VAULT
2 0 Z=0

2 5 REM THE I N I T IAL LOAN TOTAL
3 0 Y=0

3 5 REM THE I N I T IAL DEPO S I T
4 0 X= 1 00

4 5 REM 2 0 % TO VAULT , 8 0 % TQ LOANS
50 z=z+ . 2 * X : Y=Y+ . 8 * X

5 5 REM THE LOAN I S NEW DEPO S I T
60 X= . 8 * X

6 5 REM D I SPLAY RESULTS
70 U S I NG ' • ##### . ## ' ' .---------- format the data
80 PRINT ' ' VAULT ' ' : z for $ and ¢
90 PRINT ' ' LOANED ' ' : Y

9 5 aEM REPEAT
1 00 GOTO 5 0

W e ran the program on our Pocket Computer and this i s what we saw:

(VAULT 2 0 . 00) } 1

c LOANED 8 0 . 0 0)
c VAULT 3 6 . 0 0) } 2

c LOANED 1 4 4 . 00)
c VAULT 4 8 . 80) } 1
c LOANED 1 9 5 . 2 0)

FEEDBACK AND SYSTEMS

(VAULT 5 9 . � 4) } 4

c LOANED 2 3 6 . 1 6)
(VAULT 6 7 . 2 3) } s
c LOANED 2 6 8 . 9 2)
c VAULT 7 3 . 7 8)
(LOANED 2 9 5 . 1 4)
(VAULT 7 9 . � 2)
(LOANED 3 1 6 . 1 1)

At this point, we decided to change the PRINT statements to PAUSE state-
ments and to let the program run awhile.

The changes: 8� PAUSE ' ' VAULT ' ' : Z
9� PAUSE ' ' LOANED ' ' : Y

We let it run for several minutes to see what happened. Since the banker only loans out
80% of the new deposit, this amount gets smaller and smaller with time. Do you think
the amount in the vault and the amount loaned out will ever stabilize? Try the version
with the PAUSE statements and see. We found that the amount in the vault ap
proached $ 1 00 and the amount loaned out reached $400.

English System Problem

Every year ComputerTown College accepts 1 ,000 eager, bright-eyed freshmen. Every
freshman takes English 1 . Of those taking English 1 , 80% pass and 20% do not. Those
who do not pass will retake it the next year. Notice that the size of the class tends to
grow because of those students who retake the course. Write a program that will print
out the number of students in English 1 in each future year.

·�

147

148 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Hint to English System Problem

The initial class size is 1 ,000 students. You should store this number somewhere, say
in Z. The next year there will be 1 ,000 new students, plus 20% of the initial year's
class. Print this total and store the result in Z. The next class size will be 1 ,000, plus
20% of the class size in Z. Print this total and store it in Z. Repeat this process for each
future year.

a. Will the class size stabilize at a given number? _____ _

b. If so, what is the number? _____ _

Solution to English System Problem

1 5 REM N W I LL COUNT THE YEARS
2� N=�

25 REM Z IS THE NUMBER IN THE CLASS
3� Z= 1 � � �

3 5 PRINT CURRENT NUMBERS
4 �. US I NG ' ' ####### ' '
5 � PRINT ' ' YEAR ' ' ; N
6 � PRINT Z ; ' ' STUDENTS ' '

6 5 REM COMPUTE A NEW CLASS NUMBER
7� Z = 1 � � �+ . 2 * Z

7 5 REM COMPUTE NEW YEAR NUMBER
8 � N=N+ 1
9 � GOTO 5 �

a. Yes, the class size wil l stabilize.
b. To find out where, RUN the program (or use a little algebra.)

Our run produced these results:

c __ Y-EAR ------'--�)
� 1 � � � STUDENTS ·�
(YEAR)
(1 2 � � STUDENTS �

FEEDBACK AND SYSTEMS

(YEAR 2)
(1 2 4)! S TUDENTS)
(YEAR 3)
c 1 2 4 8 STUDENTS)

(_____
YE

_
A
_

R
_____ 1 3---��

C 1 2 5)! S TUDENTS) ..._-- stabilized at 1 ,250
--------------�- students

Using a little algebra,

Z = 1 000 + .2Z

.8Z = 1 000

z = 1 250

Weight Wait Problem

You have no doubt observed that animals store fat for the winter. Wishing to be eco
logically sound, organically whole, and in tune with nature, we should certainly adopt
nature's own strategy. There is one difficulty. Carrying fat around takes energy; in
fact, it takes 1 6 calories to carry around one pound of fat for one day. One must get the
1 6 calories by eating food or by using up fat. One pound of fat furnishes 3,500 calories.
This also means that to add one pound of body fat, one must accumulate 3 ,500 more
calories than one uses.

If a person weighs 1 50 pounds now and eats 2,500 calories each day, then to
what weight will the person eventually grow? (Please ignore the weight of the food
eaten.)

149

ISO PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Hint to Weight Wait

First, some decisions. What do you need to store and where shall you store it? You will
need to store the initial weight, W. You will need to store the new weight at the end of
each day. Call this X. The new weight (X) will equal the old weight (W) minus the
weight of the fat burned up to carry the old weight around, plus the weight of the fat
accumulated due to the calories eaten.

Solution to Weight Wait Problem

The person's weight is initially 1 50 pounds. To carry around W pounds for one day re
quires 1 6 X W /3500 parts of a pound of fat. The person will burn up this amount of
fat dµring the day to carry W pounds around.

The person has also eaten 2,500 calories during the day. This i's equivalent to
2500/3500 parts of a pound of fat. The person will add this amount.

1 5 REM I N I T I AL I Z E WEIGHT W
2 0 W= 1 5 0

2 5 REM COMPUTE NEW WEIGHT X
3 0 X=W- 1 6 * W / 3 5 0 0 + 2 5 0 0 / 3 5 0 0

3 5 REM PRINT NEW WEIGHT
4 0 PAUSE ' ' NEW WEIGHT IS ' ' : X

4 5 REM REI N I T IALIZE WEIGHT W
5 � W=X

5 5 REM GO COMPUTE NEW WEIGHT
60 GOTO 3 0

The weight will grow to 1 56.2. Put on a pot o f coffee and take a break while you
run this program. It took our run about 22 minutes to reach 1 56.0. The closer you get
to the final weight, the smaller the increases are. Here are the first few printouts that
flashed by.

(NEW WEIGHT I S 1 5 0 . 0 2 8 5 7 5)
c NEW WEIGHT I S 1 5 0 . 0 5 7 0 2 0)
(NEW WEIGHT I S 1 5 0 . 08 5 3 3 5)
c NEW WEIGHT I S 1 5 0 . 1 1 3 5 2 1)
(NEW WEIGHT I S 1 5 0 . 1 4 1 5 7 8)

FEEDBACK AND SYSTEMS 151

You could speed up this routine. Notice that you are doing some needless divi
sions in line 30. Since 1 6/3500=.00457 1429 and 2500/3500=.7 1 42857, you can re
write line 30 as w x=w- . � � 4 5 7 1 4 2 9 *W+ . 7 1 4 2 8 5 7 . In fact, you could factor out W to
get 3 � x= . 9 9 5 4 3 8 6 *W+ . 7 1 4 2 8 5 7 . This saves one subtraction and two divisions.

The print statements take much time too. Change line 60 to

6� IF x-w< . � � � 5 THEN 1 1 � .

Add line 1 10:

1 1 � BEEP (3) : PRINT X : END

You don't have to keep an eye on the display, but keep your ears open for the beep.
With these two changes our run took about 101h minutes. At that point X - W was
.005, and the program automatically ended. We didn't quite reach 1 56.2, but we did
get close. The final reading was:

���
�

�
����

�
�
1-5_
6
_
.
_
1 4
_
2
_
6
_
�
_
5
_
9-�

By changing line 60 to 6� I F x-w < . � � � � 5 THEN 1 1 � you could get much closer.
However, the program would run much longer.

Paying for the Potlatch Problem

The native Indians of the Northwest have had an interesting tradition. Rather than
compete and show off their possessions and wealth, they try to outdo one another in the
giving of gifts. My neighbors Little Nut and Paying Deer are trying to establish this
great tradition locally. Little Nut gives $ 1 0 per day in gifts to Paying Deer, and also
adds $.90 extra for each $ 1 of gifts that he received from Paying Deer on the previous
day. Paying Deer gives $ 1 2 each day to Little Nut and adds $.80 for each $ 1 in gifts
that he received on the previous day from Little Nut.

You should check to see what happens as the days pass. Will their gifts grow
without bound? Who is the most generous?

Hint for Paying for the Potlatch Problem

The new amount given by each neighbor is completely determined by the previous
amounts both gave. Initially, Little Nut gave $ 1 0 and Paying Deer gave $ 1 2. It is use
ful to compute a few values by hand to get a feel for the computations that the com
puter must do. Here are the first few values.

Little Nut
1 0
20.8
35.78

Paying Deer
1 2
20
28 .64

152 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Carry on the computations until you decide what must be done in the computer pro
gram. At each new computation cycle, the new values become the old values and
newer values are computed.

Solution to Paying for the Potlatch Problem

Let Y denote the current amount given by Little Nut. Let Z denote the current
amount given by Paying Deer. These are given initially by Y = 10 and Z = 1 2 (line
20) . Let L denote the new amount given by Little Nut. This new amount is $ 1 0, plus
90% of the amount given by Paying Deer (line 30). Similarly, the new amount given
by Paying Deer is $ 1 2, plus 80% of the amount given by Little Nut (line 40) . The first
stage of the computation cycle is now finished, and you can print the new computed
values (line 50). To continue the next cycle, set the current amounts equal to the new
amounts and redo the calculations (lines 60 and 70).

When you make a run, you should notice the difference between Little Nut's
gifts and Paying Deer's gifts. Is the difference getting larger or smaller?

1 5 REM I NI T IAL I Z E VARIABLES
20 Y= 1 0 : Z= 1 2

3 0 L= 1 0+ . 9 * Z : REM LITTLE NUT ' S G I FT

4 0 P = 1 2 + . 8 * Y : REM PAY ING DEER ' S

5 0 PRINT L , P

5 5 REM REDEFINE I N I T IAL VALUES
60 Y=L : Z=P

6 5 REM G O COMPUTE NEW G I FTS
70 GOTO 3 0

Here are the first few displays of our run.

2 0 . 8
2 8 .

3 5 . 7 7 6
4 0 . 9 6

4 6 . 5 5 8 7 2
5 0 . 2 9 1 2

5 4 . 3 2 2 2 7 8 4
5 7 . 009664

5 9 . 9 1 2 0 4 0 4 5
6 1 . 8 4 6 9 5 80 8
6 3 . 9 3 6 669 1 2
6 5 . 3 2 9 8 0 9 8 1
66 . 8 3 4 4 0 1 7 7

G I FT

2 0 .
2 8 . 6 4

3 4 . 4
4 0 . 6 2 0 8

4 4 . 7 6 8
4 9 . 2 4 6 9 7 6

5 2 . 2 3 2 9 6
5 5 . 4 5 7 8 2 2 7 2

5 7 . 60 7 7 3 1 2
5 9 . 9 2 9 6 3 2 3 6
6 1 . 4 7 7 5 6 6 4 6

6 3 . 1 4 9 3 3 5 3
64 . 2 6 3 8 4 7 8 5

You might want to insert a line to print out the differences between L and P . Put
it in at line 52.

52 PRINT L - P

' � - I

We observed these differences:

L-P

. 8
- . 6 4
1 . 3 7 6

. 3 3 9 2
1 . 7 9 1) 7 2
1 . 1) 4 4 2 2 4
2 . 1) 89 3 1 8 4
1 . 5 5 1 8 4 1 2 8
2 . 3 1) 4 3 1) 9 2 5
1 . 9 1 7 3 2 5 7 2
2 . 4 5 9 1 1) 2 6 6
2 . 1 8 1) 4 7 4 5 1
2 . 5 7 1) 5 5 3 9 2

FEEDBACK AND SYSTEMS 153

Do you think the differences are approaching some constant value? Go through
enough cycles to find out for yourself. You might also want to study the differences of
the differences. Those of you with some higher mathematics can tie this into rates and
accelerations.

Triple Threat Problem

The triplets, Arnold, Bertrand, and Clem, each got an electric blanket for their birth
day this year. The blankets are of the very latest design; they cool in the summer, heat
in the winter, and have a remarkable range of temperature.

·

The triplets do have their individual preferences. Arnold likes to be cool and is
comfortable at 7 1 degrees. �ertrand is happy as a clam at 72 degrees. Clem likes it a
bit warmer at 73 degrees.

It looked like the perfect gift, but unfortunately, there was a catastrophy. When
the triplets went to bed, the temperature was 72 degrees. They did not suspect the aw
ful truth - their controls had become switched. Arnold had the control for Bertrand's
blanket, Bertrand had the control for Clem's blanket, and Clem had the control for
Arnold's blanket. You pn hardly imagine the trouble that followed.

Arnold \Vas too warm at 72 degrees, so he lowered the temperature (Bertrand's.
temperature) by 1 degree. Meanwhile, Bertrand was perfectly comfortable at 72 de
grees and left the temperature (Clem's temperature) unchanged. Clem, of course, was
too cold at 72 degrees and raised the temperature (Arnold's temperature) by I degree.
Things got worse and worse.

After one minute had gone by, all the changes had taken effect. Arnold was now
feeling warm at 73 degrees, Bertrand was feeling cold at 7 1 degrees, and Clem was
feeling cold at 72 degrees. They all turned over at the same time and changed their
controls by 1 degree. Well, this made it even worse. After this minute had gop.e py, all
the changes had taken effect, and you can clearly see that it will take a computer to
describe how the three temperatures changed, minute by minute, degree by pegree,
throughout the tragjc night.

Write a progra� to compute the fate of the triplets.

154 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

. Hint for Triple Threat Problem

In order to see what needs to be done in a computer program, it is often useful to carry
out the computations by hand until the inner logic of the program begins to become
clear. Here are the first few values of the temperatures for the blankets.

ARNOLD
72

BERTRAND
72

CLEM
72

73 7 1 72
74 70 73
74 69 74

Carry the computation on by hand until you are clear about the calculations in
volved. Notice that the new values become old values for the next stage of calculation.
The new temperature at each stage depends on whether some old temperature was
above, at, or below the comfort level. For example, Arnold's new temperature is Ar
nold's old temperature, plus - 1 , 0, or 1 , depending on whether Clem's old temperature
was above, at, or below 73 .

The first thing you need to do is decide what you need to store and where to store
it. You need to store the initial temperatures for Arnold, Bertrand, and Clem. Use
A(l), A(2), and A(3) . You will be computing the next values for each 9f the triplets.
Store the new values in A(4), A(5), and A(6) .

The next thing you will need to do is figure out how to simulate the decisions to
raise or lower the temperature of the adjoining blanket. Arnold, for example, will com
pare his present temperature A(1) with his desired temperature which is 7 1 . Arnold
will change Bertrand's old temperature A(2) by - 1 , 0, or 1 , to get the new tempera
ture A(5), depending on the sign of the difference, 7 1 -A(l) .

We're sure you will be able to transfer this information to Bertrand and Clem:

Solution to Triple Threat Problem

Arnold will change Bertrand's temperature by - 1 , 0, or 1 , depending on the sign of the
difference 7 1 -A(l) . Bertrand's new temperature A(5) will be Bertrand's old tempera
ture A(2), plus the change SGN(7 1 -A(l)) . We can say this in BASIC. The SGN
function returns the sign of any number.

For example: SGN(-3) = - 1
SGN(3) = 1
SGN(O) = 0

The SGN function returns only the values - 1 , 0, or 1 . Thus, in BASIC,
A(5)=A(2)+SGN(7 1 -A(1)).

Similarly, Clem's new temperature A(6) will be Clem's old temperature A(3) ,
plus the change SGN(72-A(2)) caused by Bertrand's temperature difference. In
BASIC, this is A(6)=A(3)+SGN(72-A(2)) .

FEEDBACK AND SYSTEMS ISS

Similarly, Arnold's new temperature A(4) is given by
A(4)=A(l)+SGN(73-A(3)) . Here is a program using these suggestions.

1 S REM I N I T IALIZE TEMPERATURES
20 A (1) = 7 2 : . A (2) = 7 2 : A (3) =7 2

2 S REM COMPUTE NEW VALUES
30 A (S) =A (2) +SGN (7 1 -A (1))
4 0 A (6) =A (3) +SGN (7 2 -A (2))
S 0 A (4) =A (1) + SGN (7 3 -A (3))

S S REM PRINT NEW TEMPERATURES
60 PRINT A (4) ; A (5) ; A (6)

6 S REM RE I N I T I AL I Z E TEMPERATURES
70 A (1) �A (4) : A (2) =A (S) : A (3) =A (6)

7 S REM REPEAT THE PROCESS
8 0 GOTO 3 0

I t i s sad to relate that Clem froze solid a s a snow ball early i n the evening. Then,
as Clem began fo thaw out, Arnold's temperature rose to feverish heights. We didn't
run our program long enough to determine the final outcome, but their survival is in
doubt. Here are the results of our watch. Perhaps you were more patient and saw fur
ther results.

A B c

7 3 7 1 7 2 S 3 8 3 7 4 7 3 1 0 3 s 1 96 80 28
7 4 7 0 7 3 S 2 8 4 7 3 7 4 1 0 2 S 0 9 7 7 9 2 7
7 4 69 7 4 S 2 8 S 7 2 7 S 1 0 1 4 9 9 8 7 8 2 6
7 3 6 8 7 S S 3 86 7 1 7 6 1 0 0 4"8 9 9 7 7 2 S
7 2 6 7 7 6 S 4 8 7 7 0 7 7 9 9 4 7 1 00 7 6 2 4
7 1 66 7 7 S S 8 8 69 7 8 9 8 4 6 1 0 1 7 S 2 3

7 0 6 6 7 8 S 6 8 9 6 8 7 9 9 7· 4 S 1 0 2 7 4 2 2
69 6 7 7 9 S 7 9 0 6 7 8 0 96 44 1 0 3 7 3 2 1
68 68 8 0 S 8 9 1 66 8 1 9 S 4 3 1 0 4 7 2 2 0
6 7 6 9 8 1 S 9 9 2 6 S 8 2 9 4 4 2 1 0 s 7 1 2 0
66 7 0 8 2 6 0 9 3 6 4 8 3 9 3 4 1 1 0 6 7 0 2 1

6 S 7 1 8 3 6 1 9 4 6 3 8 4 9 2 4 0 1 0 7 69 2 2

6 4 7 2 8 4 6 2 9 S 6 2 8 S 9 1 3 9 1 0 8 6 8 2 :3

6 3 7 3 8 4 6 3 9 6 6 1 86 9 0 3 8 1 09 6 7 2 4

6 2 7 4 8 3 6 4 9 7 6 0 8 7 8 9 3 7 1 1 0 66 2 5

6 1 7 S 8 2 6 S 9 8 5 9 8 8 8 8 3 6 1 1 1 6 5 2 6.

6 0 7 6 8 1 66 9 9 5 8 8 9 8 7 3 S 1 1 2 6 4 2 7

S 9 7 7 8 0 6 7 1 00 S 7 9 0 86 3 4 1 1 3 6 3 2 8

S 8 7 8 7 9 6 8 1 0 1 5 6 9 1 8 5 3 3 1 1 4 6 2 2 9

S 7 7 9 7 8 6 9 1 0 2 S S 9 2 8 4 3 2
5 6 8 0 7 7 7 0 1 0 3 5 4 9 3 8 3 3 1
S S 8 1 7 6 7 1 1 0 4 .. 5 3 9 4 8 2 3 0
S 4 8 2 7 S 7 2 1 0 4 S 2 9 5 8 1 2 9

156 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

War Game Problem

The kingdom of Pandab and the republic of Quat are always on the verge of war. Nei
ther country trusts the other, and they spend most of their time and energy preparing
for the possibility of war. They both follow what seems to them to be a reasonable and
rational policy. Each spends a basic amount of money on defense, but adds an extra
amount to take into account the armaments of the other side. Pandab spends l 0 billion
dollars each year, plus half of whatever the Quats spent the year before. The Quats,
similarly, spend 1 1 billion dollars each year, plus one-third of whatever the Pandabs
spent the year before.

The foreign ministers of both countries have pointed out that this shows their
peaceful intentions, since any decrease in the expenditures by the other side will auto
matically result in a decrease in their own expenditures.

What will be the result of this common policy? Write a program to simulate the
conditions.

Hint for War Game Problem

The first year Pandab spends 10 billion dollars and Quat spends 1 1 billion. How much
will each spend the second year? Pandab will add half of 1 1 billion to its budget. The
total spent by Papdab will be 10 + .5X 1 1 = 1 5 .5 billion.

The Qua ts will spend 1 1 billion dollars, plus one-third of 1 0 billion, for a total of
1 4.33 billion dollars.

The following year Pandab will spend 1 0 + .5X 14.33, while Quat will spend
1 1 + .33X 1 5 .5 . The computation will continue in this way in each succeeding year.

Solution to War Game Problem

You will need to store the initial budgets. Let A(1) and A(2) contain the budgets for
Pandab and Quat, respectively. You will need to compute and store the new budget for
the next year. Let A(3) and A(4) contain the new budgets.

1 5 �EM STORE I N I T I AL BUDGETS
2(J A (1) = 1 (J : A (2) = 1 1

2 5 REM PRINT THE BUDGETS
3(J U S I NG ' ' ##### . # ' ' : PRINT A(1) , A (2)

3 5 REM COMPUTE PANDAB ' S NEXT BUDGET
4(J A (3) = 1 (J+A (2) / 2

4 5 REM COMPUTE QUAT ' S NEXT BUDGET
5(J A (4) = 1 1 +A (1) / 3

5 5 REM REI NITIALIZE
6(J A (1) =A (3) : A (2) =A (4)

6 5 REM DO I T AGAIN
7 (J GOTO 3 (J

�-�----------------------��.�.-.. �·-��-----�. -- -- -.---.,---. --

FEEDBACK AND SYSTEMS 157

Notice that we have formatted the print statement in line 30 to show tenths of
billions of dollars. It seems ridiculous to try to print greater accuracy than that. How
ever, more accurate figures are used to compute the results. The budgets will stabilize
at 1 8 .6 and 1 7 .2 .

Show Flow Problem

The recent ComputerTown Computer Show was a great success. Everyone came and
stayed all day. There was a lot to see. There were computers that talked and comput
ers that listened. There were computers that walked and computers that thought.
There were musical computers and typing computers and computers that played
games in all the colors of the rainbow. The show was held in three large rooms. It was
noticed early in the morning that the people moved from room to room in a very or
derly way. The diagram below shows how the people moved. The numbers show the
percentage of persons in the room who flowed through the doorway in each minute.
This shows, for example, that during a one-minute period, 95% of the people in Room
1 stayed there, while 2% moved to room 2, and 3% moved to room 3 .

I ROOM 1
G

2%
'--"
�

GI 0

ROOM 2
3% 1----5% -) (-1% 6%

G
�
r-..... I

4% ROOM 3
Initially, there were 1 ,000 people in each room. How many people will be in each

room at the end of 1 hour? Do you think they might all be in the same room? Might
the numbers fluctuate? Will the number in each room reach some equilibrium level?
Is the final state dependent on the initial amounts in each room? A cleverly con
structed program would yield the answer to these questions.

158 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Hint to Show Flow Problem

How are you going to use all those numbers? Do a few cases by hand and see just what
this is all about. How many people will be in room 1 after 1 minute? There are 1 ,000
people there originally, and the diagram shows that 95% stayed. This means that .95 X
1 000 = 950 stayed in room 1 . However, more people came in from the other two
rooms. Of the 1 ,000 people in room 2, 5%, or 50 persons, came into room 1 . Of the 1 ,-
000 people in room 3, 4%, or 40 persons, came into room 1 . The total in room 1 after 1
minute is .95 X (# in room 1) + .05 X (# in room2) + .04 X (# in room 3) = 1 ,040.

You can see how the calculations will go. A little planning and a few decisions
are now in order. You will need to store the initial numbers for each of the rooms.
These will be the basis for the numbers in each room at the end of 1 minute. Store the
initial numbers in rooms 1 , 2, and 3 in memories A(l) , A(2), and A(3) . Store the com
puted numbers in A(4), A(5), and A(6) .

Solution to Show Flow Problem

1 S REM SET I N I T IAL ROOM NUMBERS
20 A (1) = 1 0 0 0 : A (2) = 1 00 0 : A (3) = 1 00 0

2 S REM COMPUTE NEW NUMBERS
30 A (4) = . 9 S * A (1) + . D S * A (2) + . 0 4 * A (3)
4 0 A (S) = . 0 2 * A (1) + . 9 4 * A (2) + . 0 6 *A (3)
S 0 A (6) = . 0 3 * A (1) + . 0 1 * A (2) + . 90 * A (3)

S S REM REINITIALIZE
60 A (1) =A (4) : A (2) =A (S) : A (3) =A (6)

6 S REM GO COMPUTE AGAI N
7 0 GOTO 3 0

Oops! We forgot something. I hope you didn't. Can you see an important line missing
from this program? It would be useful to add a print statement at some appropriate
line. Since we know the original values, we won't print them. Instead, we put our print
statement at line 62. We also forrnatted the PRINT statement with a USING state
ment in line 22.

2 2 U S I NG ' ' ##### ' ' ---------
6 2 PRINT A (1) ; A (2) ; A (3)

This forces the print
statement to ignore
fractional parts of people.

FEEDBACK AND SYSTEMS 159

Here's how the format worked out when the program was run.

Room 1 Room 2 Room 3

1 � 4 � 1 � 2 � 9 4 �
1 � 7 6 1 � 3 6 8 8 7
1 1 1 � 1 �4 8 8 4 1
1 1 4 � 1 � 5 8 8 � �
1 1 68 1 �6 5 7 6 5
1 1 9 4 1 � 7 1 7 3 4
1 2 1 7 1 � 7 4 7 � 7
1 2 3 8 1 � 7 7 684
1 2 5 7 1 � 7 8 6 6 3
1 2 7 5 1 � 7 8 6 4 5
1 2 9 1 1 � 7 8 6 3 �
1 3 � 5 1 � 7 7 6 1 6

If you add the three values, you can see that the total doesn't always equal 3,000
(because fractional parts are ignored) . No doubt, one or two may have sneaked off to
the snack bar, or the rest room. They may have even left the show. The official counter
may have missed one or two as they were passing from room to room._

Well, are you ready to make any predictions from the print-outs so far? Do you
think the rooms will stabilize? Try changing the PRINT statement to PAUSE. Then
you can do something else for awhile and come back to check the display later.

62 PAUSE A (1) ; A (2) ; A (3)

After several minutes, we came back to the Pocket Computer. It seems to be sta
bilized at:

1 4 4 6 1 � 1 8 5 3 5

We let i t run awhile and found a slight change to:

1 4 4 6 1 � 1 7 5 3 5

Presumably, someone went home. That's not bad though - 2,998 people still at
the show. If you were planning a computer show, it would be nice to know such things
as people flow before the show began. Then you could plan for three different-size
rooms, and there would be equal space for all.

In case you are wondering, after one hour there were 1 ,445 people in room 1 ,
1 ,0 1 9 people i n room 2 , and 5 3 5 people i n room 3 . So, the flow had just about stabi
lized the count in each room.

Remember, the Pocket Computer has been using fractions of people in its calcu
lations even though we formatted the print statement for integers. If someone were to

160 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

actually count the people in each room, they couldn't count the fractions. Therefore,
our program should calculate with integers.

We could change lines 30, 40, and 50, using the integer function.

3)? A (4) = I NT (. 9 5 *A (1)) + I NT (.)J 5 * A (2)) + I NT (.)J 4 *A (3))

etc.

However, this method would cut off the decimal part of our calculations completely.
We would find that many people were disappearing from our count. It would be better
if we rounded off the calculations to the nearest integer. Then we would get a more ac
curate count. We will therefore change l ines 30, 40, and 50 as follows:

3)J A (4) = I NT (. 9 5 *A (1) + . 5) + I NT (. 0 5 *A (2) + . 5) + I NT (. 0 4 *A (3) + . 5)
4)J A (5) = I NT (. 0 2 *A (1) + . 5) + I NT (. 9 4 *A (2) + . 5) + I NT (. 0 6 *A (3) + . 5)
5)? A (6) = I NT (.)J 3 * A (1) + . 5) + I NT (.)J 1 * A (2) + . 5) + I NT (. 9)J * A (3) + . 5)

Now, when we run the program, we see:

1)? 4)? 1)? 2)? 9 4)?
1)? 7 7 1)? 3 6 8 8 7
1 1 1)? 1)? 4 9 8 4)?
1 1 4 1 1)? 5 8 7 9 9
1 1 69 1)?66 7 6 4
1 1 9 5 1)? 7 1 7 3 4
1 2 1 8 1)? 7 5 7)? 8

You can see that these figures are similar to the first approach, but not quite the same.
If we let the program run until the room counts stabilize, we see the display:

1 4 4 2 1)? 2 5 5 3 5

So, you see, final results of a computer program depend quite a bit on methods that the
programmer uses.

Summing Up Chapter Seven

All the programs in this chapter have been feedback systems that perform calculations
an<l feed the results back to the beginning of the program. They are recalculated and
fed back over and over again. Many real life situations are similar. We make decisions
based on the result of previous situations. A computer is very good at solving problems
that can be organized in this way.

Problem solving becomes much simpler when you can separate the problem into
small steps, decide how each step can be accomplished, and see how each step fits into
the complete solution.

You used the same, or similar, techniques to solve each of the problems in this
chapter. Although the problems appeared quite different on the surface, the same
methods were used to reach the varied solutions.

CHAPTER EIGHT

Random Walk

Numbers occur in this world in numerous quantities and styles. Quite often they occur
at random. Sometimes numbers appear to be equally random. Other times they seem
to be random within certain areas or shapes, such as a "normal" distribution.

This chapter looks at the randomness of numbers in many ways. In this chapter,
you will learn how to:

• generate random numbers to simulate coins and dice;
• describe different kinds of randomness;
• sort numbers into a histogram; and
• use random numbers to simulate real events.

162 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Random Number Generator Problem

How do you change a 4-digit number, R, into another 4-digit-number in a "random"
manner? Here is one recipe:

1 . Stretch it by 22 1 . (221 times the original number)
2. Shift it by 2, 1 1 3 . (add 2, 1 1 3 to the result of 1)
3 . Reduce i t by multiples of 1 0,000. (subtract INT(R/ 1 0000) X 1 0000)

NUMBER

REDUCER

R = R _ INT (R/ 1000) * 1 0,000

In BASIC, this may be written as:

R=2 2 1 * R+ 2 1 1 3
R=R- I NT (R/ 1 PPPP) * 1 PP�P l

The new value of R is remarkably independent of the old value of R.
Write a program that allows the user to input an initial value for R, then com

putes and prints out new values for R in a "random" manner using the recipe above.

RANDOM WALK 163

Hint to a Random Number Generator

This will be an often used program. You should write it in such a way that it can be
easily used as a subroutine in other programs. Write the subroutine starting at line 500
with a label, "RND". Here is how the top of the program might look.

1 5 REM I NP UT AN I N I T IAL VALUE FOR R
2 0 I NP UT R

2 5 REM GET A RANDOM NUMBER R
3 0 GOSUB ' ' RND ' '

4 0 PRINT R

Complete the program so that an indefinite number of random numbers will be
printed. The initial value for R at line 20 only has to be executed once. The subroutine
will produce a series of 4-digit random numbers.

Solution to a Random Number Generator Problem

1 5 REM INPUT AN I N I T IAL VALUE FOR R
2 0 I NPUT R

2 5 REM GET A RANDOM NUMBER R
3 0 GOSUB ' ' RND ' '

4 0 PRINT R

4 5 REM DO I T AGAI N
5 0 GOTO 3 0
60 END

5 00 ' ' RND ' ' : REM RANDOM GENERATOR
5 1 0 R= 2 2 1 *R+2 1 1 3
5 2 0 R=R- I NT (R/ 1 0 0 0 0) * 1 0 0 0 0
5 3 0 RETURN

We input the initial value of 1 ,234 for R and saw the following random numbers
appear.

4 8 2 7 3 6 9 2 4 0 5 7
8 8 8 0 8 0 4 5 8 7 1 0
4 5 9 3 0 0 5 8 7 0 2 3
7 1 66 4 9 3 1 4 1 96
5 7 9 9 1 8 6 4 9 4 2 9

If we stop the program and run i t again using the same value (1 ,234) as the initial
value of R, we will see the same random numbers displayed in the same order. But, if
we input a different initial value for R, we will get a new and different list o

_
f random

numbers.
Try this program with several different inputs.

164 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Random Tests Problem

In the last problem, you saw the devious ways of the random number generator. You
ought now to be responsible and craftsmanlike, and test the random generator to see if
it does really generate randomly. Wouldn't you like to generate a few numbers using
the "RND" subroutine and sort them out by size? Even if you said no, you should try
it anyway. Here is a chart to fill in. Just make a check mark in the appr<?priate box for
each random number that you generate. Notice the boxes are for sorting decimals be
tween 0 and I . Write your program so that it prints random numbers between 0 and I .

0 . I . 2 .3 .4 .5 .6 .7 .8 .9 1 .0

(
(� � � � ((� �

� � �
0 0 . 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 .0

Hint to Random Tests

Here's what we got when we sorted out the first 23 random numbers that were
generated. The first random number that our generator gave us was R/ 1 0000 = .4678.
This number is between .4 and .5 so a check was put in the appropriate box.

RANDOM WALK 165

Solution to Random Tests Problem

The check marks should tend to fall into all boxes with the same probability. This
shows that the numbers being generated are really random in the sense that any num
ber is as likely as any other number to occur. The random numbers which are gener
ated should be uniformly distributed between 0 and 1 . With such a small sample of
numbers (23), our distribution is not truly uniform. A much larger sample would be
needed to provide a good test. Each four place decimal number between 0 and 1 should
be as likely as any other. This routine furnishes us with a standard, uniformly distrib
uted random variable.

1 5 REM I N I T I ALI Z E I ' RND ' I
2 0 I NPUT R
3 0 GO SUB I ' RND ' I
4 0 P R I NT R/ 1 0 0 0 0

4 5 R E M GET ANOTHER NUMBER
5 0 GOTO 3 0

5 0 0 I ' RND ' I
5 1 0 R= 2 2 1 * R+ 2 1 1 3
5 2 0 R=R- I NT (R/ 1 0 0 0 0) * 1 00 0 0
5 3 0 RETURN

After you have thoroughly tested the random number generator, you'll undoubt
edly use it in future programs.

Some Triangle Problem

What do you suppose happens when two uniform variables are added together?

?
-
- I I I I I I

0 0 0

Write a program to add two "standard," random numbers. Place the results in the fol
lowing boxes.

I I I I I I I I I I I
0 0.2 0.4 0.6 0.8 1 .0 1 .2 1 .4 1 .6 1 .8 2.0

166 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Hint to Some Triangle Problem

Be sure you input an initial value for R, then some lines that look something like this:

GOSUB I ' RND ' I : A=R/ 1 µµ µ µ
GOSUB I ' RND ' I : B=R/ 1 µµ µ µ
C==A+B
PRINT C

Don't forget to add line numbers and insert the random number generator.

Solution to Some Triangle Problem

1 5 REM I N I T IALI ZE ' ' RND ' ' WITH 4 D I G I T NUMBER
2µ I NPUT R

3 µ I ' BEG I N ' I

3 5 REM GET TWO RND NUMBERS
4µ GOSUB I ' RND ' I : A=R/ 1 µµ µ µ
5 µ GosuB ' • ' RND ' • , B=R; 1 µµ µ µ

5 5 'REM COMPUTE AND PRINT S UM
6µ C=A+B
7µ PRINT C

7 5 REM DO IT AGAI N
s µ GOTO • ' BEGI N ' •
9µ END

5 µ µ • ' RND ' •
5 1 µ R=2 2 1 * R+ 2 1 1 3
5 2 µ R=R- I NT (R/ 1 µ µ µ µ) * 1 µµ µ µ
5 3 µ RETURN

The random numbers A and B, and their sum C, tend to look like this:

1 1 1 1 1 1 1 1 1 1 . + 1 1 1 1 1 1 1 1 1 1
0 A 0 B

-
-

0 1 2

Yours might not look exactly like this, but the random generator will be trying.

..
c

What do you think happens when three uniform variables are added? Maybe
this?

RANDOM WALK 167

Plus or Minus Problem

Back and forth, up and down, in and out, randomly coming and going. What we need
now is a short subroutine, called "SIGN", that returns a random variable S, which is
equal to + I or - 1 with equal probability. Number the "SIGN" subroutine starting
with line 600. Include a GOSUB for "RND".

Hint for Plus or Minus

Get a 4-digit random number R from "RND". R will be a number between 0 and
I 0,000, such as 5,7 1 3 . Divide the numbers as shown here.

- +
0 5000

Solution to Plus or Minus Problem

600 ' ' S I GN ' '
6 1 0 GOSUB ' ' RND ' ' : REM R I S NOW DEFI NED
6 2 0 IF R>= Si;li;l0 LET S = 1
6 3 0 I F R < S 0 0 0 LET S=- 1
6 4 0 RETURN

1 0,000

Don't forget
"RND" at lines
500 through 530.

Lines 620 and 630 can be simplified a bit. Here is another way to get S.

620 S= 1
6 3 0 I F R < 5 0 0 0 LET S=- 1

o r

620 S=SGN (R- 5 0 0 0)
6 3 0 I F S = 0 LET S = 1

o r

6 2 0 I F R> = 5 0 0 0 LET S = 1 : GOTO 6 4 0
6 3 0 S=- 1

Coin Flop Problem

A coin comes in one of two states, heads or tails. This has been useful, entertaining,
and instructive for humankind throughout recorded history. A coin can tell a fortune
or win a fortune. A coin can send a message or make a decision.

168 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

(Coin messages tend to be all noise and no message.) There is much to be learned from
coins.

Write a program which prints out a random sequence of O's and l 's using the "RND"
subroutine. Make it a subroutine called "COIN" beginning at line 550. It should re
turn a variable, C, which is randomly equal to 1 or 0. ·

Hint to Coin Flop Problem

It looks like a random number generator is needed. How can we use our 4-digit gener
ator to set raridom O's or l 's?

Generate random numbers with the "RND" subroutine. Call "RND" with the
GOSUB command GOSUB "RND". Remember, "RND" has been used from lines
500 through 530 so it will be out of the way of "COIN".

"RND" will return a 4-digit number R. Now you need to do something with R to
get O's and l 's . You could set C = 1 , when R > 5000.

Solution to Coin Flop Problem

Get a random 4-digit number from "RND". Check the size of R to get C. There are
several ways you could do this.

I F R>= 5 JJ JJ JJ LET C = 1
I F R < 5 JJ JJ JJ LET C=JJ

o r
C= 1
I F R < 5 JJ JJ JJ LET C=JJ

o r
C= (5 JJ JJ JJ < R)

�-------------------------��-�.· ��-�·" --\ ...

RANDOM WALK 169

We used the last one. Notice that this subroutine will need to call "RND". Append
"RND" to the program. The complete program with documentation removed looks
like this:

1 5
2 µ

3 µ
4 µ
5 µ

5 µ µ
5 1 µ
5 2 P
5 3 0

5 5 µ
5 6 µ
5 7 µ
5 8 0

REM I N I T I AL I Z E R
I NPUT R

GO SUB I 1 COIN ' I
PRINT C
GOTO 3 p

I ' RND ' '
R=2 2 1 *R+2 1 1 3
R=R- I NT (R/ 1 PPPP) * 1 PPPP
RETURN

I I COIN ' I

GO SUB I I RND I I

C= (5 0 0 0 < R)
RETURN

As a result of 20 coin flops, we saw this sequence of zeros and ones on the
display.

I O zeros and 10 ones - we were lucky.

Gambler's Ruin Problem

Gambling was invented right after the coin. (It was probably a good thing: It helps to
redistribute the coins.) Of one thing you may be sure; if you play long enough, you'll
run out of money. The length of time it takes to run out of money in a coin tossing
game i llustrates the nature of the gambler's ruin problem.

Write a program that simulates a gambler who starts with five pennies. On each
toss of the coin, the gambler loses a penny if it comes up tails (- 1) and wins a penny if
it comes up heads (+ 1) . How long does it take the gambler to go broke?

Hint to Gambler's Ruin

Use the "SIGN" subroutine to generate + 1 and - 1 at random. A running total will
keep track of the number of coins that the gambler has left.

170 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

First run:

Solution to Gambler's Ruin Problem

1 0 I NPUT R : REM I N I T IALIZE ' ' RND ' '
2 0 T=5 : REM GAMBLER STARTS WITH 5

2 5 REM GET RANDOM S= + 1 , - 1
3 0 GOSUB ' ' S I GN ' '

3 5 REM KEEP TRACK OF TOTAL PENNI ES
4 0 T=T+S

45 REM PRINT TOTAL AND CHECK IF BUSTED
50 P RI NT T
60 I F T>0 THEN 3 0
7 0 PRINT ' ' BUSTED ' ' : END

5 0 0 ' ' RND ' '
5 1 0 R= 2 2 1 * R+ 2 1 1 3
5 2 0 R=R- I NT (R/ 1 00 0 0) * 1 0 0 0 0
5 3 0 RETURN

6 0 0 ' ' S IGN ' '
6 1 0 GOSUB ' ' RND ' '
6 2 0 S=SGN (R- 5 0 0 0)
6 3 0 I F S=0 LET S= 1
6 4 0 RETURN

To see how quick the gambler's ruin is reached, we ran the program with these
results.

4 3 2 1 0 BUSTED
Second run: 6 5 4 5 4 3 2 1 BUST ED
Third run: 6 5 6 7 6 5 6 7 8 9 8 9 8 9 1 0 1 1 1 0 1 1 1 0 1 1

1 1 1 2 1 3 1 2 1 3 1 2 1 1 1 0 1 1 1 2 1 1 1 2 1 3 1 2 1 3 1 2
1 1 1 2 1 3 14 1 5 1 6 1 7 1 8 1 7 1 8 1 9 20 2 1 22 21 20
19 20 1 9 20 1 9 20 20 20 2 1 2 2 2 1 2 2 23

We gave up! I fwe had kept going, would the gambler have ever busted?

How to Add When You Don't Have the Numbers

You may have noticed that good numbers are hard to find. Error, ignorance, and mis
information are everywhere. What is one to do? Decisions are necessary and plans
must be made, even though we don't have all the facts. There must be some way to
take our ignorance into account.

Here is a common situation. Your car gets around 20 miles per gallon. The vaca
tion trip that you want to make will be about 500 miles. About how much gas will it
take?

You don't know all the facts exactly; but you do know something. What you
know is hard to describe. Let's try to describe one of your fuzzy facts. What is it that
you know when you say your car gets around 20 miles per gallon? Sometimes it gets
1 8 , sometimes it gets 22, sometimes it gets something in between. A picture describes
the situation.

1 0

RANDOM WALK 171

1
18 1 9 20 21 22

Any of the numbers between 1 8 and 22 could be your actual mileage. The number that
actually occurs is largely a matter of chance. The mileage is a random fl.umber be
tween 1 8 and 22. You can simulate mileage numbers using the "RND" subroutine
listed earlier in the book.

Random Mileage Problem

Can you write a program which will generate random numbers between 1 8 and 22 so
that each decimal number is as likely as any other?

Hint to Random Mileage Problem

The subroutine "RND" generates numbers between 0 and 9,999. You need decimal
numbers between 1 8 and 22. You can generate numbers between 0 and 4 by dividing
each number from "RND" by 2,500. Now, if you add 1 8 to these numbers, you will
have what you want.

a. 1 0�������������-

20 ������������-
30 ������������
40 �������������
50������������-

60������������

70�������������

80�������������

90������������

- · - - - -- -

a. l iJ
2 1J

3 �
4 1J

S iJ
6 1J

7 1J

8 1J
9IJ

REM START THE RANDOM GENERATOR
I NPUT R

REM GO GET A RANDOM NUMBER
GOSUB I I RND ' I

REM ADJUST NUMBER
M = R/ 2 5 iJiJ+ l 8

PRINT M

REM GO DO IT AGA IN
GOTO 41J

FROM I I RND I I

172 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

You could use the previous method to generate random numbers that simulate
the distance D that you will cover on your trip. Suppose the trip will be between 450
and 550 miles. Line 60 would look like this:

Now that you are so good at generating random numbers, perhaps you would
like to finish the problem that we started.

Random Gas Problem

Your car mileage is a random number M that varies uniformly between 1 8 and 22.
The distance to be traveled is a random number D that varies uniformly between 450
and 550. Write a program to generate random numbers G which correspond to the to
tal gallons of gasoline used on the trip.

Hint to Random Gas

Miles per gallon times gallons equals miles. Put another way, M X G = D. What you
need is the random number for G.

a. 1 0
20
30
40
50
60
70
80
90

1 00
1 10
1 20
1 30

500 "RND"

(Random subroutine goes here)

.,,.,,.,,, .• .,-.,,-,,1 !" .,,-. �. �·���""'�·c;n·,·- ' • .. ,.... ' �� ,, � '

a. 1 0 REM S TART THE RANDOM GEN ERATOR
2 0

3 0
4 0
5 0

6 0
7 0
8 0

I NPUT R

REM COMPUTE RANDOM
GOSUB I ' RND ' I
D = R/ 1 0 0+4 5 0

REM COMPUTE RANDOM
GOSUB I 1 RND 1 I

M = R/ 2 5 00+ 1 8

9 0 REM GENERATE G
1 0 0 G = D/M

1 1 0 PRINT G

1 2 0 REM GO DO I T AGAI N
1 3 0 GOTO 4 0

D I S TANCE D

MI LEAGE M

RANDOM WALK 173

We ran this program, and generated 200 numbers. The numbers we got ranged
from 2 1 up to 30. When we sorted them out, we got the following distribution.

42

35
31

23 24

9
1 1

21 22 23 24 25 26 27 28 29 30

This distribution tells us a great deal. Although you can expect to use about 25 gallons,
the actual amount may deviate from 2 1 gallons or, on rare occasions, to nearly 30
gallons.

Open House Problem

Parties are hard to plan, and an open house is nearly impossible. The main trouble is
that you never know just how many people will show up. Even if you know how many
people are coming, you won't know how much they will eat or drink. Let's suppose that
the number of people coming is a random number between 30 and 40, whose distribu-

- tion looks like this:

1 1 1 1 1 1 1 1 1 1 1 1 1
30 40

174 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Let's also suppose that the number of crackers eaten by each person is a random num
ber between 10 and 1 5, whose distribution looks like this:

II I I I I I I I I I I I
1 0 1 5

Write a program to investigate the number of crackers required for the party.
Do you think 500 crackers will be enough?

Hint to Open House

You will need to generate a random number P to simulate the number of people who
come to the party, and you will need a random number C to simulate the number of
crackers eaten by each person who comes. For example, if P � 35, then you will need
to generate 35 random numbers C to simulate the crackers eaten by each of the guests.
The sum of these cracker numbers is what we need to know.

a. 1 0
20
30
40
50
60
70
80
90

100
1 1 0
1 20
1 30
140
1 50
1 60
1 70

500 "RND"
(Add the "RND" subroutine here)

,. ,· ,.- . . -

a. 1 0
2 0

3 0
4 0
5 0

60
70

8 0
9 0

1 0 0
1 1 0

1 2 0
1 3 0
1 4 0

1 5 0

1 60
1 7 0

5 0 0

R E M I N ITIALIZE I ' RND ' I
I NPUT R

REM GET RANDOM P
GO SUB I ' RND l 1
p = R/ 1 00 0+ 3 0

REM SET ACCUMULATOR
s = 0

REM GET P RANDOM C ' s
FOR z = 1 TO P
GO SUB I 1 RND ' I
C = R/ 2 0 0 0+ 1 0

REM ADD UP THE C ' s
s = s+c
NEXT Z

BEEP (2) : PRINT S

REM GO HAVE ANOTHER
GOTO 40

I 1 RND 1 I

TO Z ERO

PARTY

(Add the "RND" subroutine here)

RANDOM WALK 175

We ran this program to get 75 numbers (P). Here is how the numbers stacked up
in a histogram. It looks like 500 crackers will be plenty.

0 "' M
0 0 0 r-. cxi en M M M

0
q-

0 N q-
0 M q-

0 «> q-
0 q-

0 CXl q-
0 en q- 8 "'

176 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Electron Hotel Problem

Nearly everything has a battery in it these days; wristwatches and golf carts, tooth
brushes and TV sets, not to mention the occasional horseless carriage.

A battery, as any child knows, is a hotel for electrons. The electrons line up pa
tiently, waiting to enter.

The first electron in line enters and checks a room at random. If the room is
empty, then the electron occupies the room. If the room is not empty, then the electron
must go back to the front of the line and try again. (We recently looked at a battery
with a large magnifying glass and can assure you of the veracity of this report.)

Write a program that will simulate the electron hotel problem. You are, no
doubt, wondering just how many tries it will take to fill 9 rooms in a I O-room hotel.

Hint for Electron Hotel Problem

There are 1 0 numbered rooms. A random room number is chosen . The room is
checked to see if it is empty or not. If the room is empty, then it is filled. If the room is
not empty, then the process is repeated; a room is chosen at random and checked.

Let the rooms correspond to memories. Let the state of the room correspond to
the state of the memory.

Solution to Electron Hotel Problem

1 5 REM I N I TIAL I ZE ' ' RND ' '
2 0 I NPUT R

2 5 REM I N I T IAL I ZE COUNTERS
W T=0 : W=0

3 5 I N I T I ALIZE MEMORI E S
4 0 F O R Z= 1 T O 1 0 : A$ (Z) = ' ' E ' ' : NEXT Z

50 ' ' NEWTRY ' '
60 T=T+ 1

6 5 REM GET A NUMBER , 1 TO 1 0
7 0 GOSUB ' ' NUMBER ' '

7 5 REM CHECK I F FULL OR EMPTY ROOM
80 I F A$ (N) = ' ' F ' ' GOTO ' ' NEWTRY ' '

8 5 REM ROOM I S EMPTY , F I LL I T
9 0 A$ (N) = ' ' F ' '

9 5 REM I NCREMENT F I LL COUNTER
1 0 0 w=w+ 1

1 0 5 REM CHECK I F 9 ROOMS ARE FULL
1 1 0 I F W>S GOTO ' ' PR I NT ' '

1 1 5 REM I F 9 ARE NOT FULL TRY
1 2 0 GOTO ' ' NEWTRY ' '

1 3 0 I I PRINT I I
1 4 0 PRINT ' ' TRIES I I ; T
1 5 0 GOTO 3 0

2 0 0 ' ' NUMBER ' '
2 1 0 GOSUB ' ' RND ' '
2 2 0 N = I NT (R/ 1 0 0 0) + 1)
2 3 0 RETURN

AGAI N

(Append "RND" subroutine)

Histogram Problem

RANDOM WALK 177

Numbers pour in upon us. Heaps of numbers, swelling oceans of numbers. It's the
plague of the age. We at last have more information than we can deal with . The sim
plest and most useful thing you can do with a string of numbers is to sort it out by size.
Here is a string of numbers:

47, 6 1 , 52, 48, 57, 29, 5 1 , 82, 38

Here is the string sorted into boxes by size. The sorting boxes are 10 numbers
wide. For example, any number between 40 and 49 goes into the same box. Any num
ber between 50 and 59 goes into the next box, and so on.

178 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

0 1 0 20 30 40 50

5 1
57
52 6 1

60 70 80 90

It is quicker and easier to use check marks instead of writing all the numbers down.
This is sometimes called a histogram.

0 10 20 30 40 50 60 70 80 90

1 00

We are most interested in the number of checks in each box. If we count the numbers
in the boxes we get:

0 10 20 30 40 50 60 70 80 90 .

Write a subroutine called "HISTOGRAM" that starts at line 800 and allows the user
to input a sequence of numbers between 0 and 1 00 (but not including 1 00) . The pro
gram should keep count of the number of occurrences in each interval. When a nega
tive number is input, the program should print out the number of occurrences in each
interval and end. The output for the previous example would be:

fJ ' fJ ' 1 ' 1 ' 2 ' 3 ' 1 ' fJ ' 1 ' fJ

Hint to Histogram Problem

It is always a good idea to make a program as foolproof as possible. The program takes
numbers between 0 and 1 00 as input. Someone will certainly input 397,52 1 or some
other very large number. What happens then? You had better put in a test to make
sure the input is in the proper range.

It will also be necessary to make some decisions. You will need to keep track of
the numbers in each box. Where shall you store the I O numbers? Let's agree on A(l)
through A(I O) . These will be counters. What shall you call the input? Use the variable
Z. Now, all that's left for you to do is figure out how to test Z to get its box number
and add I to the number in that box.

RANDOM WALK 179

Solution to Histogram Problem

Consider the heart of the program first. How are you going to test the number Z and
determine what box it should go into? You can make this a subroutine and give it some
appropriate name, like "FIND BOX". Here is one possible approach:

2 0 0 ' ' F I NDBOX ' '
2 0 5 REM F I NDS BOX NUMBER Y FOR NUMBER Z
2 1 0 I F 90<=Z LET Y= 1 0 : GOTO 3 1 0
2 2 0 I F 8 0 < = Z LET Y=9 : GOTO 3 1 0
2 3 0 I F 7 0 <=Z LET Y=8 : GOTO 3 1 0
2 4 0 I F 6 0 < = Z LET Y=7 : GOTO 3 1 0
2 5 0 I F 5 0 <=Z LET Y=6 : GOTO 3 1 0
2 6 0 I F 4 0 <=Z LET Y = 5 : GOTO 3 1 0
2 7 0 I F J 0 <=Z LET Y=4 : GOTO 3 1 0
2 8 0 I F 2 0 <=Z LET Y = 3 : GOTO 3 1 0
2 9 0 I F 1 0 <=Z LET Y = 2 : GOTO 3 1 0
3 0 0 Y= 1
3 1 0 RETURN

Here is another method using a FOR-NEXT loop. It takes fewer lines, but must
search through each 10 conditions for each number. The first version simply searches
until the proper box is found and then goes to the end of the routine. Which method is
faster?

2 0 0 ' ' F I NDBOX ' '
2 0 5 REM F I NDS NUMBER Y FOR NUMBER Z
2 1 0 FOR X= 1 TO 1 0
2 2 0 W= 1 0 * (X- 1)
2 3 0 V= (W < =Z) * (Z <W+9) .. ---------
2 4 0 I F V= 1 LET Y=X
2 5 0 NEXT X
2 6 0 RETURN

Here is another possibility:

2 0 0
2 0 5
2 1 0
2 2 0
2 3 0
2 4 0

' ' F I NDBOX ' '
REM F I NDS BOX
FOR X= 1 TO 1 0
I F Z < 1 0 * X LET
NEXT X
RETURN

One last possibility:

NUMBER Y FOR NUMBER Z

Y=X : X= 1 0

y�

200 ' ' F I NDBOX ' ' : Y = I NT (Z / 1 0) + 1 : RETURN

logic AND function

To break out of
the FOR-NEXT loop

180 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Using the last method, here is how a finished version of the whole program looks.

1 5 REM I NI T IALIZE MEMORY
2 � FOR Z= 1 TO 1 � : A (Z) =� : NEXT Z

2 5 REM I NPUT A NUMBER BETWEEN � AND 1 ��
3 � I NPUT Z

3 5 REM TEST Z
4 � I F Z < � GOTO I I PRINT I I

5 � I F Z > = 1 �� BEEP ! 3) : PRINT ' ' TOO B I G , PRESS ENTER ' ' : GOTO 3 �

5 5 REM GET BOX NUMBER Y
6 � GOSUB I ' F I NDBOX ' I

6 5 REM I NCREMENT THE BOX
7� A (Y) =A (Y) + 1

7 5 REM I NPUT ANOTHER NUMBER
8 � GOTO 3 �

2 � � I ' F I NDBOX ' I : Y= I NT (Z / 1 �) + 1 : RETURN

3 � � I ' PRINT ' I
3 � 5 REM PRINT RESULT AND END
3 1 � FOR Z= 1 TO 1 � : PRINT A (Z) : NEXT Z
3 2 � END

Fox and Rabbits Program

On a certain island lives 20 rabbits and a single fox. The rabbits each have their own
territory, and there is one rabbit per territory. The fox hunts in exactly one territory
per day, at random, in the 20 territories.

Write a program to simulate this situation and print out the total number of rab
bits caught after any number of days. Assume that there are very atypical rabbits that
do not reproduce. The fox also doesn't realize that if it has already caught a rabbit in a
given territory, he will not catch another rabbit there. So, some days he will not make
a catch. About how long will it take the fox to catch 1 8 of the rabbits?

Hint to Fox and Rabbits Problem

The first thing to do is make a decision as to how the rabbit territories are to be repre
sented by the computer's memories. You need 20 memory registers. Each will record
whether a rabbit is there (1) or not (0). Use A(3 l) through A(50) to record the state
of the 20 rabbit territories.

The second thing to do is devise a random number subroutine that returns num
bers from 3 1 through 50. The random number will simulate the foxes random choice
of a territory.

You will also need counters for the day and for the number of rabbits caught.
And don't forget the printout.

Solution to Fox and Rabbits Problem

I
1 S REM I N I T I A L I Z E ' ' RND ' ' j:? < R < 1 j:?j:? j:? j:?
2 j:? I NPUT R

2 S REM I NI T I A L I Z E TERRITORIES
3 j:? FOR Z=3 1 TO S j:? : A (Z) = 1 : NEXT Z

3 S REM I N I T I A L I Z E DAY COUNTER
4 j:? D=j:? : C=j:?
4S REM GET A RANDOM NUMBER R
S J:? GOSUB ' ' RND ' '

S S REM ADJUST R TO T THE TERRI TORY
6j:? T=INT (R* 2 J:? / 1 j:?j:?J:?J:?+3 1)

6 S REM I NCREMENT DAY COUN�ER
70 D=D + 1

7 S REM I F I T ' S THERE CATCH THE RABBIT
8j:? IF A (T) = 1 LET A (T) =j:? : C=C+ 1

8 S REM PRI NT THE DAY ' S RESULTS
9j:? PRINT D , C

9 S REM GO TO NEXT DAY
1 0 0 GOTO SJ:?

2 0 0 ' ' RND I '
2 1 0 R= 2 2 1 * R+ 2 1 1 3
2 2 0 R=R- I NT (R/ 1 j:?j:? j:?j:?) * 1 j:?j:?j:? j:?
2 3 0 RETURN

Short Story Problem

RANDOM WALK 181

Have you ever wanted to be a writer? All you need to do is put words together to get
sentences. Once you've gotten enough sentences, you've got a book. Soon thereafter,
fame and fortune will knock on your door. Since all that is needed is a goodly supply of
sentences, perhaps you ought to see if you can mechanize the process.

Write a program which picks one word from each of the lines that follow to make
a complete sentence. '

0.

I .
2.

3 .

4.

5 .

A, THE, THIS, THAT
'

TALL, SHORT, HAPPY, SAD
t

BLONDE, CHINESE, FRENCH, MEXICAN
t

MAN, WOMAN, BOY, GIRL
t

RAN, WALKED, CRAWLED, DANCED
r

SLOWLY, QUICKLY, WILDLY, NAKED

6. ON, OVER, THROUGH, AMONG
t

7 . THESE, DRY, THE, WET
)"

8 . GRASSES, LEA YES, ROCKS, FLOWERS

182 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Hint for Short Story Problem

The first thing you need is to decide where to put all those words. Store them in memo
ries A$(30) through A$(65). A$(30)="A"; A$(3 1)="THE"; A$(32)="THIS"; and
so on until A$(65)="FLOWERS".

To choose a word from line 0, you need to choose a random number (1) from the
set 0, 1 ,2,3 . The word you choose is at A$(30+ I) . To choose a word from line 1 , you
need another random number (I) . The word you choose is at A$(30+4+1) . In a similar
way, you choose a word from line 6 at A$(30+4*6+1).

Solution to Short Story Problem

1 5
2 0

2 5
3 0

3 5
4 0

R E M I N I T I AL I ZE
INPUT R

REM I NPUT WORD

I 1 RND 1 I

LIST
GOSUB ' ' WORDLI ST ' '

REM CHOOSE A WORD FROM
FOR L=0 TO 8

4 5 REM GET I (0- 3)
5 0 GOSUB ' ' I NTEGER ' '

EACH LINE

5 5 REM PRINT S ELECTED WORD
6 0 PAUSE A$ (3 0 + 4 * L+ I)
7 0 NEXT L

7 5 REM LEAVE BLANK AFTER S ENTENCE
8 0 PAUSE " " : BEEP (1)

8 5 REM GET ANOTHER SENTENCE
9 0 GOTO 4 0

2 0 0 ' ' WORDL I S T ' '
2 1 0 FOR Z = 3 0 TO 6 5
2 2 0 PRINT ' ' WO RD ' ' ; Z
2 3 0 INPUT A$ (Z)
2 4 0 NEXT Z
2 5 0 RETURN

5 0 0 ' ' RND ' '
5 1 0 R=R* 2 2 1 + 2 1 1 3
5 2 0 R=R- I NT (R/ 1 00 00) * 1 00 0 0
5] 0 RETURN

8 0 0 ' ' I NTEGER ' '
8 1 0 GOSUB ' ' RND ' '
8 2 0 I = I NT (R * 4 / 1 � � � �)
8] 0 RETURN

Summing up Chapter Eight

This chapter contained a wide variety of problems demonstrating the use of random
numbers. So many things in our everyday lives seem to occur randomly that we have
only touched on the TRS-80 Pocket Computer's use in this type of application.

A variety of programming techniques were presented, but, once again, we have
only touched on the possibilities in our solutions to the problems. No doubt, your solu
tions were different from ours.' That's the beauty and excitement of problem solving.
There are many ways to reach a solution. Who is to say which method is best?

CHAPTER NINE

Computing Interest

Money was invented just a moment before borrowing and lending. It never seems to be
in exactly the right place at the right time. What to do? Borrow until you strike it rich.
Lend until you need to spend.

And, of course, the borrowers always have to make some promises to the lenders.
The chief promise is to give the money back. Another promise is to give back a lot
more money than was borrowed. That's the way it is. There is not a lot of charity
among lenders.

Computing interest can become a complex problem. You'll definitely find the
problems challenging. In this chapter you will learn:

• how to compute compound interest;
• how to compute the value of an annuity;
• how to compute time payment size;
• how to compute repayment time;
• how to compute continuous in�erest;
• how to compute time payment schedules; and
• how to compute the present value of a cash flow.

Compounding Your Interest

Suppose you invest $ 1 ,000 in an account that pays 2% each month. At the end of the
month, you will have $ 1 ,000, plus 2% of $ 1 ,000. That's $ 1 ,020. Next month, you will
collect 2% interest on the $ 1 ,020. Therefore, at the end of the second month, you have
$ 1 ,040.40 in the bank. Why not write a program to see how fast your money grows.
How long would it take for your money to double its original size at this rate? Remem
ber, your interest is compounding each month at 2% per month.

When you write a program to answer the previous question on money doubling,
let the variable A represent the amount that you deposit in the bank account. To com
pute a new value for A, increase the old value by 2%.

New amount = Old amount, plus 2% of the old amount
Or in BASIC, A = A + .02 X A

184 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

a.

In BASIC, the right side of an equality is calculated. The
result is then assigned to the variable on the left side.
Therefore, the old amount, A, is multiplied by .02 and
added to the old amount. This calculated value is then
placed in the memory assigned to A.

Your program:

a. 1 0�������������-

1 (.l
2 (.l

3 (.l
4 (.l

S f.l

6(.l
7 (.l

20����������

30 ����������

40����������

50 �������������-

60 ������������-

70������������-

REM A I S AMOUNT IN ACCOUNT
A = 1 (.l f.l f.l

REM ADD I NTEREST TO GET NEW A
A = A + . 0 2 *A

PRINT A

REM GO DO I T AGA IN
GOTO 4 (.l

When we ran this program we found that after 35 months the amount in the account
was a fraction of a cent under $2,000.

Yacht Account

Catherine owns the ComputerTown Coffee Shop. She is saving her money to buy a
racing yacht. At the end of each month, she takes $200 to the bank and deposits it in
her yacht account. The money she deposits earns interest, which is added to her ac
count. The amount of interest that the bank adds to her account is 2% of the amount in
her account during the preceding month.

How long will it take Catherine to accumulate the $ 1 00,000 necessary to start
her racing career?

COMPUTING INTEREST 185

Hint to Yacht Account Problem

Let's compute a few cases to see how Catherine's money grows month by month.

Month Amount + 2%XAmount

0 0 + .02 x 0

200 + .02X200

2 404 + .02X404

+ Deposit

+ 200

+ 200

+ 200

New Amount

200

404

6 1 2.08

To write a program to solve Catherine's problem, you will need to store some
numbers. In particular, you will need to store the amount A, which is the present bal
ance in her account. At the end of each month, you will compute a new A. It can be
stored in the same place as the previous amount. You will also need to keep track of
the months. Use the variable I to count the months.

a. 1 0
2 0

3 0
4 0

5 0

6 0

7 0
8 0

a . 1 0·�������������-

20������������-

30������������-

REM
I =

40 ������������-
50�������������

60������������-

70 ������������-
80�������������-

90 ������������-
1 00������������-

I =MONTH S , A =ACCOUNT AMOUNT
0 : A = 0

REM COMPUTE NEW A
A = A + . 0 2 * A + 2 0 0

PAUSE I , A

I F A > = 1 0 0 0 0 0 END

REM I NCREMENT MONTH
I = I + 1

9 0 REM D O I T AGAI N
1 0 0 GOTO 3 0

r
186 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Time Payment Problem

If your credit is good, the Friendly Car Dealer will let you take home that sleek beauty
with the chrome hubcaps. Of course, there will be modest monthly payments and a bit
of interest on the unpaid balance.

Can you write a program to keep track of your debt? Let's say the car costs
$ 10,000. The interest rate is 2% per month on the unpaid balance. Your monthly pay
ments are to be $250. The program should print the amount still owed each month af
ter interest has been added and the payment subtracted.

Hint to Time Payment

Let's do a few month's worth of calculations to see how it goes.

Month Amount Owed

1 0,000

2 9,950

3 9,899

Amount Plus
Interest

10,200

10, 1 49

10,097

Amount Plus Interest
Minus Payment

9,950

9,899

9,847

We started off with the principle amount (A=$ 10,000). Next, we increased A by
2% to get A + .02 X A. Then we subtracted the payment of $250 to get A + .02 X A -
250. This is the amount that is owed after the interest has been added and the payment
deducted. This amount is owed during the next month. We call this amount A for the
next round of calculations.

Write a program to calculate the amount owed at the end of each month. Print
the result. ·

a. 1 0�������������

20 �������������
30 ������������
40�������������

50����������

60������������

70 ������������-
80 ����������
90������������-

'.; - ;

a. 1 0 REM PRINCI PLE AMOUNT A
2 0 A = 1 00 0 0

3 0 REM A D D I NTEREST
40 A = A + . 0 2 * A

5 0 REM SUBTRACT PAYMENT
60 A = A- 2 5 0

7 0 PRINT A

80 REM DO IT AGAI N
90 GOTO 4 0

COMPUTING INTEREST 187

It is easy to make this program more general. You can modify the program so that
the user can input the principle amount, the interest, and the monthly payment.

1 0 I NPUT ' ' AMOUNT ? ' ' , A
2 0 I NPUT I I RATE? 1 I J R --------Input R as a decimal (.02 for 2%)
3 0 I NPUT ' ' PAYMENT? ' ' , P

4 0 REM COMPUTE NEW AMOUNT
5 0 A = A+R*A-P

60 PRINT A

7 0 GOTO 5 0

There i s another approach to this problem. I f you wrote out the arithmetic i n the
right way, you would notice a nice pattern. Here is what it looks like:

Month Amount + Interest - Payment

A * (I + R) - P

2 A * (I + R) /\ 2 - P*(l + (I + R))

3 A * (I + R) /\ 3 - P*(l +(l + R)+ (l + R) /\ 2)

N A * (l + R) /\N - P(l + (l + R)+(l + R) /\2+ . . . + (I + R) /\(N - 1))

A bit of algebraic cleverness suffices to show that the balance B owed after N inonths
simplifies to:

B = ((A * R - P) * (l + R) /\ N + P)/R

I ' . i

188 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Not simple, but simpler than performing each step. You can use this expression to
write a program that allows you to avoid all the intermediate steps and to print the
amount owed after any number of months, N.

a,

Your program:

1 µ
2 µ
3 µ
4 µ

s µ
6µ

7µ

s µ

a. 1 0�������������

20������������-

30 ������������-
40 ������������-
50������������-

60 ������������
70������������-

80������������

I NPUT ' ' AMOUNT ? ' ' , A
INPUT ' ' RATE? ' ' , R
I NPUT ' ' PAYMENTS ? ' ' , P
I NPUT ' ' HOW MANY MONTHS ? ' ' , N

REM AMOUNT OWED AFTER N MONTHS
B = ((A*R- P) * (1 +R) /\N+P) /R

PRI NT ' ' AMOUNT OWED I S $ " ; B

GOTO 1 µ

R is inserted as a decimal
(.02 for 2%)

The Time Payment Equation

The time payment equation relates the balance B to the initial amount A, the interest
rate R per time period, the payment P per time period, and the number T of time peri-
ods that have passed. '

B = ((A X R - P) X (I + R)/\ T + P)/R

This equation guides a large part of all economic activity. Most consumer credit in
volves this equation.

T.he time payment equation can be rearranged to get other important formulas.
If N is the number of payments necessary to pay off an initial debt of amount A, then
it must be true that the balance B will be equal to zero after N periods. This observa
tion leads eventually to the next equation.

The Payment Size Equation

P = A x R/(1 - (1 + R) /\(-N))

This equation gives the periodic payment P in terms of the initial amount A, the inter
est rate R, and the number N of time periods to achieve repayment.

COMPUTING INTEREST 189

Payment Size Problem

Write a program called "P" that prompts the user to enter the initial amount A, the
number N of time periods to achieve repayment, and the interest rate R per time pe
riod. The program should take these numbers A, N, and R and compute the payment
size P. The output should be the payment size P.

Your program:

a. 1 00 "P"
1 10
1 20
1 30
1 40
1 50
1 60

a. 1 00 ' ' P ' '
1 1 0 I NPUT ' ' INIT IAL AMOUNT? ' ' ; A
1 2 0 I NPUT ' ' I NTEREST RATE? ' ' ; R
1 3 0 I NPUT ' ' PERIODS TO REPAY ? ' ' , N
1 4 0 P = A * R/ (1 - (1 +R) /\ (-N))
1 5 0 PRINT ' ' S I ZE OF PAYMENT : ' ' ; P
1 6 0 END

The payment size equation can be rearranged when applying logarithms (a
mathematical notation related to exponents) to get:

The Repayment Time Equation
N = LOG(P - A * R)/LOG(l + R)

This equation gives the number N of time periods necessary to repay an amount A,
when the interest rate is R per time period, and the payment is P per time period. The
equation is written in logarithmic form to take advantage of the logarithm function of
the Pocket Computer.

Repayment Time Problem

Write a program called "T" that prompts the user to input the initial amount A, the
interest rate R, and the payment size P. The program should compute the number N
of time periods to achieve repayment. The output should be the number N of time
periods.

190 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

a.

Your program:

2 9 9
2 1 9
2 2 9
2 3 9
2 4 9
2 5 9
2 6 9

a . 200 "T"
2 10
220
230
240
250 ------------
260 ------------

I I T I I

I N PUT ' ' I N I T I AL AMOUNT? ' ' , A
I N PUT ' ' DECIMAL RATE ? ' ' , R
I NPUT ' ' PAYMENT S I Z E ? ' ' , P
N = LOG (P-A* R } /LOG (1 +R)
PRINT ' ' PERIODS TO REPAY : I 1 ; N
END

Money Grows in More Than One Way

Some money grows in spurts and jumps. Some money grows steadily and continuously.
The two ways of growing are related. Consider what happens when you put $ 1 00 in the
local bank. This bank pays 1 5% interest at the end of each year. For each dollar in
vested, $ 1 . 1 5 is returned. At the end of one year, you have 1 00(1 + . 1 5) = $ 1 1 5 in the
bank. You made $ 1 5 . Nice going. That's pretty good; but, down the street is a bank
that pays half of the interest at the middle of the year. That is, it compounds your in
terest semi-annually.

Assume that you do move your money down the street. At the end of the year,
you have 1 00(1 + . 1 5/2) X (1 + . 1 5/2) = 1 00 X (1 + . 1 5/2) A 2 = $ 1 1 5 .56. That's
better, but hold on. There is yet another bank further down the street that will pay you
your interest every day (compounded daily) . At this bank you make 100 X (1 + . 1 5/
365) /\365 = $ 1 1 6. 1 8 . That's a little better yet. But don't move your money yet.

All three of the banks discuss.ed pay the interest in spurts and jumps. One bank
calculated the interest annually, one calculated the interest semiannually, and the
third calculated the interest daily.

There is one last bank that will pay you interest every moment. They will com
pound your investment continuously. This provides a steady and continuous growth.

Continuous Interest Problem

Write a program to compute how much every initial dollar will grow if the annual in
terest rate is 1 5%, but the compounding periods are made smaller and smaller.

COMPUTING INTEREST 191

Hint to Continuous Interest Problem

The quantity that needs to be computed is (1 + . 1 5 /N) /\ N, where N is aJlowed to
grow larger and larger. Does the quantity grow even larger? Does it approach some
limiting number?

Your program:

a. 1 0 �������������
20 ������������
30 ������������
40 ������������
50 ����������

a. 1 � N = �
2 � N = N+ 1 � � �
3 � A = (1 + . 1 5 /N) /\N
4 � PRINT N , A
5 � GOTO 2 �

When we ran this program, we got these numbers.

N = 1000
N = 10000
N = 100000

A = 1 . 1 6 1 82 1 1 73
A = 1 . 1 6 1 832936
A = 1 . 1 6 1 8341 1 2

It looks like the numbers may be approaching a limit. Your TRS-80 Pocket Computer
has a built-in function EXP(X) . It is a remarkable and important fact that (1 + . 1 5 /
N)/\ N gets closer and closer to EXP(. 1 5) as N gets larger and larger. This same fact
is true for interest rates other than 1 5%.

Continuous Interest Using EXP

Write a program to compare the values of:

(1 + R / 10000) /\ 1 0000 and EXPR

for values of R = . 1 , . 1 2, . 1 4, . 1 6, . 1 8, and .2.

192 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Your program:

a. 1 0��-----------

20 ____________ _

30 ____________ _

40 ____________ _

a. 1 Ji! FOR s = 1 !ii TO 2 Jil STEP 2 ----- The Pocket Computer can only use
2 Jil R = s; 1 !il !il integral steps in a
3 Jil PRI NT (HR/ 1 Jil!il!il!il l !\ 1 Jil !il !il !il , EXP (R)

FOR-NEXT loop 4Jil NEXT S

When you .run the program, you will see that the two expressions give you very close
results.

Catherine's Folly Problem

Catherine wants her racing yacht badly. She can't wait until she saves up enough
money to pay cash. She has saved $ 10,000, but the ship costs $100,000. The yacht
dealer is a kindly fellow and will let her have the boat with a down payment of $ 1 0,000
and a payment of $2,000 per month. The dealer will charge her 2% of the unpaid bal
ance during each preceding month. How long will it take Catherine to pay off the boat,
and how much will she pay to the dealer including interest?

Hint to Catherine's Folly Problem

This problem is similar to the time payment problem. The main difference is that we
want to add a counter to count the months, and an accumulator to store all the pay
ments. Write a program to do this.

Your program:

a. 10 �------------
20 ------------

30 ------------

40 �------------

50 ------------
60 -------------

70 ------------
80 �-----------�

90 ------------�

1 00 ___________ _

COMPUTING INTEREST 193

a. We have added a month counter (I) and an accumulator (Q) to the time payment
program.

1 0 REM MONTH I , TOTAL PAID Q
2 0 I 0 : Q = 0

3 0 A 9 0 0 0 0 : REM AMOUNT OWED (S)
4 0 R . 0 2 : REM I NTEREST RATE (R)
50 P 2 0 0 0 : REM PAYMENT (P)

60 PRINT I , Q

7 0 A A+R*A-P : REM NEW AMOUNT

80 Q Q+P : REM ADD PAYMENT TO TOTAL

90 I I + 1 : REM INCREMENT MONTH COUNTER

1 00 GOTO 60

Present Value of a Cash Flow

Would you rather have a bank account from which you can withdraw $ 1 00 each
month or a business that pays you $ 1 00 per month? It really doesn't matter much,
does it? From the accountant's point of view, one is just as good as the other. The fact
that these situations have the same value is the basis for an ingenious method for com
paring seemingly incomparable situations which is called present value analysis. Here
is how it works.

Suppose that you are offered a bond that will pay you $ 1 ,000 in 10 years. What
is a fair price for the bond? You certainly wouldn't pay $ 1 ,000. If you keep the $ 1 ,000,
you can put it in the bank or some other investment and earn interest for 10 years. It
would not benefit you to waste all that interest for 10 years. The fair price of the bond
should take into account all the interest that you can earn during the length of the
bond's life.

Suppose that the interest rate that you can earn by investing your $ 1 ,000 is 1 2%
compounded yearly. What amount invested now at that rate would grow to be $ 1 ,000
after 10 years? Call this amount X for the moment. This amount X will be a fair price
for the bond, since, by investing the amount X, you can withdraw $ 1 ,000 after 1 0
years.

Having the amount X right now is equivalent to getting $ 1 ,000 in 1 0 years. We
know that:

x x (I + . 1 2) /\ 1 0 = 1 000

A bit of algebra yields: X = 1 000/(1 . 1 2) /\ 1 0 = 32 1 .97
Therefore, the present value of the bond is $32 1 .97. This method works for more com
plex cash flows.

In a home, as well as in a business, you are interested in how much money is
coming in and how much money is going out. Money may come in from more than one
source, and it certainly flows out to many different destinations. The flow of money to
and from a home or business is referred to as its cash flow.

194 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

How much should you pay now for the following package of two bonds? The first
bond yields $2,000 in 5 years, and the second bond yields $3,000 in 1 0 years. Assume a
1 2% interest rate prevails.

The present amount that you need to deposit at 1 2% interest so that you can
withdraw $2,000 in 5 years is given by the expression:

2000/ 1 . 1 2 /\ 5 = 1 1 34.85

The present amount that you need to deposit to get $3,000 in 10 years is given by:

3000/ 1 . 1 2 /\ 1 0 = 965.92

The present value of the two bonds is the sum of these amounts, or $2, 1 00. 77. This is
the amount you need to invest now at 1 2% to furnish the same cash flow as the two
bonds. The present value of a cash or income flow (money corning in as opposed to
money going out) depends heavily on the assumed interest rate.

Present Value of a Cash Flow Problem

Write a program that takes as input the expected interest rate and the amounts and
time to maturity of any number of bonds. The program should print the present value
of the bond package . .

Hint to Present Value of a Cash Flow Problem

The central computation in this problem takes the future value F of the bond, the time
T to maturity, and the expected interest rate R. It computes the present value P of the
bond. In BASIC it is:

p = FI (1 + R) /\ T

The present values P of the individual bonds in the package must be added to get the
present value of the package. It will also be necessary to tell the program when we
have finished entering all the input variables. Since bonds of future value 0 will not oc
cur, you can use this as a signal that you are through entering data.

Your program:

a. 10 �------'-------

20 �------------

30 ------------
40 -------------
50 ------------
60 ------------

70 ------------

80 -------------

90 ------------
1 00 ___________ _

a. 1 µ REM P ACCUMULATES I ND IVI DUAL PRESENT VALUES
2µ p = µ

3 µ INPUT ' ' I NTEREST RATE ? ' ' , R
4 µ I NPUT ' ' FUTURE VALUE O F BOND? ' ' , F

S µ REM CHECK I F DONE
6µ IF F = µ THEN 1 µ µ

7 µ INPUT ' ' T IME TO MATURI TY? ' ' , T

s µ P = P+F/ (H R) A T

9 µ GOTO 4 µ

1 µ µ PRINT ' ' THE P RES ENT VALUE I S ' ' , P

Stock Dividend Values

Here are two more deals for you. The first deal is:

COMPUTING INTEREST 195

You can buy stock in Acme Technology Company, a high growth computer
manufacturer. There is good reason to believe that each dollar's worth of Acme stock
will pay the following dividends at the end of each of the next 5 years.

The second deal is:

Year
Dividend

1 2 3 4 5
. 1 0 .20 .30 .40 .60

You can buy stock in Bolt Bubble Gum Company. There is good reason to be
lieve that each dollar's worth of stock will pay the following dividends at the end of
each of the next 5 years.

Year
Dividend

1 2 3 4 5
.60 .40 .20 . 1 0 . 1 0

Which of these cash flows has the highest present value? Assume a 1 5% com
pound annual interest rate.

Hint to Big Deal Problem

· What we've got here is a fixed interest rate of 1 5% per year, and various amounts ar
riving at various times in the future. This is exactly what the previous program deals
with. Use the previous program for the present value of a cash flow to do this problem.
Run each deal separately and compare the results:

Present Value for Acme _____ _

Present Value for Bolt _____ _

______ has the greater present value.

. r .,
196 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Solution to Big Deal Problem

When you run the program for present value of a cash flow, it asks "INTEREST
RATE?" You enter . 1 5 as the interest rate. Next it asks "FUTURE VALUE OF
BOND?". You enter . 1 , which is Acme's first yearly dividend. Next the computer asks
"TIME TO MATURITY?". You enter 1 , which is the time until you receive the divi
dend. Enter each of the other dividends and times in a similar manner. When all of
Acme's dividends are entered, type 0 to get the present value of the future dividencl,s.
We got .96 for the present value of Acme's expected dividends. Run the program a
second time to find the present value of Bolt's dividends. We got 1 .06 as the present
value of Bolt's expected future dividends. Bolt Bubble Gum has the greatest present
value. Although it receives less total money, it receives it sooner. That's good.

Present Value for Acme is .96
Present Value for Bolt.is 1 .06
Bolt Bubble Gum Company has the greater present value.

Present Value with Changing Interest Rates Problem

Suppose some economic forecasters project a declining interest rate for the next 5
years. Here are their latest figures.

Year
Rate

2 3 4 5
1 5% 14% 1 2% 1 0% 8%

These are the rates that you can expect to earn during each of the next 5 years on your
investments. You should take this into account \\'.hen computing present value.

We need a program which computes the present value of an amount to be re
ceived in 5 years, but which takes into account the changing interest rates.

Hint to Present Value with Changing Interest Rates Problem

Compute an example by hand to see what is required in the computer program. Sup
pose that you will receive $ 1 ,000 in 5 years. What amount needs to be invested now,
assuming the five previously projected interest rates over the next 5 years, in order to
withdraw $ 1 ,000 at the end of that time. Call the present amount P. Then P will grow
to P + R X P, or (1 + R) X P each year, where R is the rate for that year. Here is how
the calculations look:

Year Amount at Start

2
3

of Year

p
(1 + . 1 5) * P
(1 + . 1 5) * (1 + . 14) * P

Amount at End
of Year

(1 + . 1 5) * P
(1 + . 1 5) * (1 + . 1 4) * p
(1 + . 1 5) * (1 + . 1 4) * (1 + . 1 2) * p

' :"" �-

COMPUTING INTEREST 197

After 5 years P will have grown to:

(I + . 1 5) * (I + . 1 4) * (1 + . 1 2) * (1 + 1 0) * (I + .08) * P = 1 000

You can see that:

p = 1 000/((I + . 1 5) * (I + . 1 4) * (I + . 1 2) * (1 + . 1 0) * (I + .08))

The general equation for P is:

p = FI ((I + R) * (1 + S) * (1 + T) * (1 + U) * (I + V))

where P is the present value
F is the future value
R, S, T, U, and V are the interest
rates for each of the 5 years

Your program:

a. 1 0�������������

20����������

30 ����������
40 ������������-
50������������-

60����������

70������������-

80 ������������-

a. 1 � REM R , S , T , U , V ARE I NTEREST RATES
2� R = . 1 5 : S= . 1 4 : T= . 1 2 : U= . 1 0 : V = . 0 8

3 � REM F I S T H E FUTURE AMOUNT
4� INPUT F

5 � REM COMPUTE P RESENT P FOR F
6� P= F/ ((1 +R) * (1 +S) * (1 +T) * (1 +U) * (1 +V))

7 � PRINT ' ' P RES ENT VALUE = ' ' ; P

8 � END

198 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Summing Up Chapter Nine

The TRS-80 Pocket Computer performs complex business computations easily. In this
chapter we saw how to do the following calculations.

• compute the future value of an investment earning compound interest
with:
A = A X R X A where A is the amount and R is the rate;

• compute the future value of an annuity with A = A + R * A + D, where A
and R are the same as above and D is the deposit;

• compute time payment size with: P = A * R/(1 - (1 + R) /\ (-N);
• compute repayment time with: N = LOG(P - A * R)/LOG(l + R);
• compute continuous interest with: A = (1 + R/N) /\ N or EXP(R);
• compute time payment schedules with: A = A + R * A - P, where A and

R are as above and P is the payment made;
• compute the present value of a cash flow with P = F / (1 + R) /\ T, where P

is the present value, F is the future value, R is the rate, and T is the time to
maturity;

• compute the present value when the rate is changing with:
P = F/((1 + R l) * (1 + R1) * (1 + R3) * * (1 + Rn))

CHAPTER TEN

Storing, Sorting, and Searching
(Or How to Make Sure You Know

Where It's At)

The only way to keep your sanity in this increasingly complicated world is to get things
into some kind of order. Rearrange the junk in the miscellaneous drawer. File all those
clippings in the TO-BE-FILED folder. Add all the new names and telephone numbers
in your address book (or in your Pocket Computer data file). Put all the bills into al
phabetical order. Put the names of customers into alphabetical order. Well, maybe
tomorrow, or the next day, when you have some spare time with nothing better to do. ·

Computers are renowned for their orderly and efficient ways. Can you use your
friendly TRS-80 Pocket Computer to help get things in order at home and at work? Of
course you can. In this chapter you will learn how to:

• build lists;
• add, delete, and move elements within those lists;
• put a list into proper numeric order; and
• search for elements within a list.

� �--
�1

.
• • • • •
• • • • • "

1

200 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Full House Problem

Before we start storing, sorting, and searching lists of data, let's find out how much
roorri we .have in the Pocket Computer to store things. Write a quick program that
stores the number 1 into every memory location. Start with memory A(2), then A(3),
A(4), etc., until al l the available memory locations are full . The program should print
out the number of each memory location just before it is filled with the 1 .

Remember, the program is filling memory locations from one end and the other
is used to store data. If you write a short program, there will be more memories avail
able for data.

• Which of the following will happen when all the available memories are
filled with ones?

D An error message will be displayed
D 1 's will be writen over the program memory
D The RUN will stop automatically when the program memories

are reached, but there will be no error message.
• How long will it take to fill all the available memories? _____ _

minutes.
• What will be the subscript of the last memory filled with a one?

Hint to Full House Problem

Be careful not to use any variables other than A. These memories will be filled with
data when the program runs:

I I 1 I 1 I H xxxxxxxxxxx I
A(1) A(2) A(3) A(4) Program

Use A=A(l) as the only variable in the program. Keep it short so that you can store
lots of data.

STORING, SORTING, AND SEARCHING 201

Put your Full House Program here

a. 1 p
2 p
3 p
4 P
s p

a . 1 0�������������-

20����������

A= 1

30 �������������-
40 ������������-
50������������-

PAUSE A
A (A) = 1
A=A+ l
GOTO 2 p

You could save a little space by writing this program on two lines.

l p A= 1
2 p PAUSE A : A (A) = 1 : A=A+ l : GOTO 2 p

• When all available memories were filled with ones:
� An error message was displayed

3 P : 4

(ERROR CODE #4 - Insufficient memory)

• It took about 5 minutes to run the complete program.
• The last memory filled with a 1 was A (l99).

When you have a short program, you can use lots of memories to store data. If
certain memory locations are filled with different numbers, can you write a program
that will pick out the largest of the numbers?

Number Search Problem

Write a program that will let you input numbers into memories A(1) through A(I O).
The program must then search through the memories and find and print the largest of
the ten numbers that you have input.

202 PROBLEM-SOL YING ON THE TRS-80 POCKET COMPUTER

A (1)

Hint To Number Search Problem

Let's take a look. Hmmm, A(1) is looked at first. At the beginning, it is the biggest
number (since you haven't looked at any of the others) . You should probably store
A(l) somewhere. Let M = A(l) . M will be the biggest number found at any stage of
the program.

A(2) A(3) A(4) A(5) A(6) A(7) A(B) A(9) A (1 0)

Next, check A(2). Is it bigger than M? If it is, then you should store the contents
of A(2) in M. Otherwise, go right on to look at A(3) .

At each step, compare the contents of a memory with M, which contains the big
gest number found so far.

Solution to Number Search Problem

1 0 REM STORE NUMBERS I N MEMORY
2 0 FtiR X = 1 TO 1 0
3 0 I N PUT A (X)
4 0 NEXT X

5 0 REM A (1) I S I N I T I ALLY THE B I GGEST
60 M=A (1)

7 0 REM COMPARE THE REST WITH M
8 0 FOR X=2 TO 1 0
90 I F A (X) > M LET M=A (X)

1 0 0 NEXT X

1 1 0 P R I NT M

A different approach would be to start with M as a number so small that all 1 0
numbers stored i n memory would be larger. Then the numbers would be compared
with M, starting with A(l) . For practical purposes, the number -999999 is probably
small enough.

STORING, SORTING, AND SEARCHING 203

Second Solution to Number Search Problem

1 0 REM S TORE NUMBERS I N MEMORY
20 FOR X= 1 TO 1 0
3 0 INPUT A (X)
4 0 NEXT X

5 0 REM START WITH SMALL M
60 M=- 9 9 9 9 9 9

7 0 R E M COMPARE T E N NUMBERS W I TH M
8� FOR X= 1 TO 1 0
9 0 I F A (X) >M LET M=A (X)

1 00 NEXT X

1 1 0 P R I NT M

The Pocket Computer finds the largest number very fast. Of course, it would
take longer if there were more numbers. It would take it even longer if it had to re
arrange the numbers in order from largest to smallest.

Out of Order Problem

Suppose that you have a list of numbers and would like to find out if they are in as
cending order or not. You would need a program that checks whether each number
examined is at least as big as the previous number. The program should allow you to
input the numbers. It should then check whether the number input is at least as big as
the previous number. If the input number is smaller than the previous one, the pro
gram should print "OUT OF ORDER" and stop.

There is one minor constraint. Only three data memories can be used. You may
choose any three memories but no more than three.

Hint to Out of Order Problem

It will be necessary to store the old number, the new number, and the message "OUT
OF ORDER". After the new number has been checked, it then becomes the old num
ber, and a newer number is input.

The first number input is always in order. What old number should you compare
it with? How about a number less than any number that might be input? You can use
-999999 again for this purpose.

204 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

This flow chart might help you with your program.

LET O L D
N U M BE R =
-999999

I NPUT N EW
NUMBE R

LET O L D
N U M BE R =
N EW N U M B E R

Y E S

P R INT
"OUT OF
O R D E R "

STOP

Solution to Out of Order Problem

We will store the old number in X, the new number in Y, and the message in Z$. We
will start X off as the large negative number -999999. This ensures that the first
number input will be greater than X.

The Program

1 � X=-9 9 9 9 9 9

2 � I NPUT Y

3 � I F Y < X THEN

4 � X=Y

5 � GOTO 2 �

6 � P R I NT ' ' OUT

7 f,! END

6�

OF ORDER ' '

From the Flowchart

Let old number = -999999

Input new number
Is new number out of order?
If yes, go to line 60
Let old number = new number
Go back for new number

Print "out of order"

Stop

STORING, SORTING, AND SEARCHING 205

Cycle Up Problem

Have you ever noticed how often things get out of order? There are some days when
the whole world seems off a notch. For times like that, you may need a little routine to
put things right again. See if you can write a routine which shifts the contents of A(1)
to A(2), the contents of A(2) to A(3), the contents of A(3) to A(4), and so on, until the
contents of A(l 9) go into A(20) and the contents of A(20) go into A(1) .

(A(l) A(2) A(3) A(4) .,...A(5).,... A(1 9) .,...A(20) · I
Around the World in 20 Cycles

Hint for Cycle Up Problem

If you can save a copy of A(20), then you can store A(1 9) in A(20). Once A(1 9) has
been saved in A(20), you can store A(l 8) in A(1 9) . Eventually, A(1) will be stored in
A(2). This will then allow you to place the copy you made of A(20) into A(l) . All the
data have been moved without losing any.

2 3 1 9 20
A(20) ...- A(1 9) ..-- A(18) A(3) � A(2)-- A(l)

----------- � I Temporary Storage I 2 1

It is done i n reverse order to avoid losing data that have not yet been moved.

Solution to Cycle Up Problem

1 0 REM SAVE A COPY OF A (2 0)
2 0 Z=A (2 0)

3 0 REM Y W I LL I NDEX THE LOCAT I ONS
40 FOR Y = 2 0 TO 2 STEP - 1

5 0 REM S H I FT ALL CONTENTS UP
6 0 A (Y) =A (Y- 1)
7 0 NEXT Y

80 REM NOW STORE THE CONTENTS OF A (2 0)
9 0 A (l) =Z

Of course you must have some data in memories A(l) through A(20) before you
can move it. This can be done through another FOR-NEXT loop.

1 REM LOAD DATA
2 FOR Y= l TO 2 0
3 I NPUT A (Y)
4 NEXT Y

206 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

If you want to see the final results, you can print them out with a PAUSE state
ment in a FOR-NEXT loop.

1 �� FOR Y = 1 TO 2 �
1 1 � PAUSE ' ' A (' ' ; Y ; ' ') = ' ' ; A (Y)
1 2 � NEXT Y

Reverse Play Problem

Thurston is a fine fellow and a good programmer. He has only one apparent fault.
Thurston really never did learn to tell his left hand from his right hand. That causes
some problems, as you can imagine. When Thurston writes programs, he tends to store
the data in the wrong order. Since Thurston is such a great person, we will program
around his backward data. We need a program that takes the numbers in locations
A(l) , A(2), A(3) , A(20) and puts the numbers in the opposite order. The con
tents of A(1) goes to A(20), the contents of A(2) goes to A(1 9) , and so on, until the
contents of A(20) goes to A(l) .

Hint to Reverse Play Problem

The program will be similar to the Cycle Up Program. Watch out that you don't lose
A(20) when you store A(I) . Save a spare copy of A(20) .

Solution to Reverse Play Problem

1 � REM LET Z I NDEX THE LOCAT IONS
2� FOR Z= 1 TO 1 �

3 � REM Y W I LL RUN FROM 2� TO 1 1
4 � Y = 2 1 -Z

5 � REM STORE A COPY OF A (Y) I N X
6� X=A (Y)

7 � REM TRANSFER A (Z) TO A (Y)
8 � A (Y) =A (Z)

9 � REM TRANSFER X TO A (Z)
1 �� A (Z) =X
1 1 � NEXT Z

If you were to trace the action that takes place as the FOR-NEXT loop is exe
cuted, the results would be as shown in the following table. Of course, you will have to
put some numbers in A(l) through A(20) before reversing the data.

• ' .' l '

STORING, SORTING, AND SEARCHING 207

Old New z y x
Content Content

A(l) A(20) 1 20 A(20)
A(20) A(l)

A(2) A(I 9) 2 1 9 A(1 9)
A(I 9) A(2)

A(3) A(I 8) 3 1 8 A(I 8)
A(I 8) A(3)

A(4) A(I 7) 4 1 7 A(l 7)
A(17) A(4)

A(5) A(l 6) 5 1 6 A(I 6)
A(1 6) A(5)

A(6) A(I 5) 6 1 5 A(I 5)
A(I 5) A(6)

A(7) A(14) 7 14 A(I 4)
A(14) A(7)

A(8) A(I 3) 8 1 3 A(I 3)
A(I 3) A(8)

A(9) A(I 2) 9 1 2 A(I 2)
A(I 2) A(9)

A(l O) · A(I 1) I O 1 1 A(I 1)
A(I 1) A(I O)

After ten times through the loop, the data have been completely reversed.

Sort of a Problem Problem

Sorting a set of numbers is one of the most tedious jobs a person can do. Try putting
this set of numbers in order:

1 27, 33, 1 , 20 1 , 47, 1 27, 4 1 , 6, 1 1 , 1 1 7

Even with only ten numbers it is a disagreeable job. One hundred numbers can
be painful, and one thousand numbers can be a trauma. However, sorting is one of the
most common and important jobs done by computers. Can you write a program that
takes as input 20 numbers, then arranges them in order, and stores them in order in
registers A(27) through A(46)?

l

208 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Hint for Sort of a Problem Problem

Sorting by Insertion

Have you ever played bridge, or sorted papers alphabetically? What one usually does
is to start at one end of the cards or papers, say the low end. The first card is left where
it is. Now consider the second card. It is inserted before or after the first card depend
ing on its value. Now consider the third card. It is inserted at the appropriate place
among the first two cards. The process continues until all the cards have been inserted
among the previously sorted cards.

To make a computer version of the insertion sort, we must first decide where we
will store the numbers to be sorted. Let's store them in memories A(l), A(2), . . . ,
A(20). Compare A(2) with A(l) . If A(2) < A(l), then we wish to take A(2) out of its
present position and put it in the first position.

"'
A(l) -+-A(2) A(3) A(4) A(S) . . .

To do this, we must move the contents of A(l) to A(2), and A(2) to A(l) .
ln the next step we will compare A(3) with A(l) and A(2). We want the con

tents of A(3) to replace the contents of the first location whose contents are greater
than or equal to A(3) .

A(l) A(2)
I

A(3) A(4) A(S) . . .

Similarly, in each succeeding step we will compare an item with each previous
item and insert it at the first location whose contents are greater than or equal to it.

STORING, SORTING, AND SEARCHING 209

Solution to Sort of a Problem Problem

Insertion Sort

The first thing that is needed is a routine which inputs and stores the items to be
sorted. We used multiple statements on some lines to make the program shorter.

1 0 REM I NPUT THE I TEMS TO BE S ORTED
20 FOR Z= 1 TO 2 0 : I NPUT A (Z) : NEXT Z

The heart of the routine involves comparing each item with the set of previously
sorted items and inserting it among them at the appropriate place.

Step 1
The item in A(l) may be considered to be a rather small set of
sorted items.

Step 2
Compare the item in A(2) with the item in A(l) . If A(l) <=
A(2), then the items are i n the proper order and we can deal with
the item in A(3) . But, if A(2) < A(l), then the item in A(2) must
be inserted at A(1), and the item at A(1) must be moved up to
A(2).

Step 3
Compare the item in A(3) with the items in A(l) and A(2). If it is
smaller than one of these previous items, then it is inserted at that
spot and those above that spot are moved up to fill the gap left by
A(3) .

Other steps
The program continues in this way until each item has been com
pared with all the previous positions and inserted into its proper
place. Here is a crude first attempt at a program.

1 0 REM I NPUT THE I TEMS TO BE S ORTED
20 FOR Z= 1 TO 2 0 : I NPUT A (Z) : NEXT Z

3 0 W=A (2) : REM SAVE A COPY OF A (2)
4 0 I F W < A (1) LET A (2) =A (1) : 'A (1) =W

5 0 REM NOW COMPARE AND I NS ERT A (3)
6 0 W=A (3)
7 0 I F W < A (1) LET A (3) =A (2) : A (2) =A (1) : A (1) =W
80 IF W < A (2) LET A (3) =A (2) : A (2) =W

9 0 REM NOW COMPARE AND I NS ERT A (4)
1 00 W=A (4)
1 1 0 I F W<A (1) LET A (4) =A (3) : A (3) =A (2) : A (2) =A(1) :

A (1) =W
1 2 0 I F W <A (2) LET A (4) =A (3) : A (3) =A (2) : A (2) =W
1 3 µ I F W < A (3) LET A (4) =A (3) : A (3) =W

1 4 0 REM NOW COMPARE AND I NS ERT A (S)

. . . and so on.

210 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

A program like this would work in principle, but not in practice. The final lines
of this program would be many and long. This first attempt gives us something to work
on and improve.

We notice that the program falls into blocks, each having very similar structure.
Lines 90 to 1 30 form a typical block. A FOR-NEXT loop could be used for the LET
statement and the statements to the right of the LET statement to simplify each line.
We will put the block that moves the data away in a subroutine.

Here is how our new program looks.

5 REM I NSERTION S ORT

1 0 REM INPUT 20 I TEMS TO BE · S ORTED
20 FOR Z= 1 TO 2 0 : I NPUT A (Z) : NEXT Z

2 5 REM NOW SORT THEM
30 FOR X=2 TO 2 0
4 0 W=A (X)

4 5 REM COMPARE W WITH A (Y) AND I NSERT
5 0 F O R Y= 1 T O X- 1
6 0 I F W<A (Y) GOSUB 1 00
7 0 NEXT Y
8 0 NEXT X
9 0 END

95 REM MOVE SUBROUT I NE
1 1 0 FOR Z=X TO Y+ 1 STEP- 1 : A (Z) =A (Z - 1) : NEXT Z
1 2 0 A (Y) =W : Y=X- 1 : RETURN

Let's make the program a little more general now. Instead of providing for 20
data items, it would be desirable to let you put in the number of data items that you
desire.

5 REM I NPUT DATA
1 0 INPUT ' ' HOW MANY NUMBERS ? ' ' ; N
2 0 FOR Z = 1 TO N : I NPUT A (Z) : NEXT Z

.
2 5 REM NOW S ORT THEM
3 0 FOR X=2 TO N
4 0 W=A (X) : REM SAVE A COPY OF A (X)
5 0 Y=X- 1 : REM INDEX Y W I LL COUNT DOWN
6 0 I F W>=A (Y) THEN 9 0 : REM I NSERT WHEN W

CAN S I NK NO FARTHER

6 5 REM I F W <A (Y) THEN CONT INUE
7 0 A (Y+ 1) =A (Y) : REM S H I FT U P ONE
8 0 I F Y> 0 THEN 6 0 : REM REPEAT UNT I L Y=0
90 A (Y+ 1) =W : REM I NSERT W

1 0 0 NEXT X

STORING, SORTING, AND SEARCHING 21 1

Hint for Sort of a Problem Problem

Exchange Sort

The choir director used this method. He wants to line up the choir boys in a row and
then would move down the row exchanging adjacent boys so that the smaller stood on
the left. After a few passes up the row, all the boys would be ordered from smallest to
tallest.

To make a computer version, the numbers to be sorted must be stored, say in
memory locations A(1) , A(i) . . . A(20). Begin with the first pair. If A(1) < = A(2),
then move on to the next pair. But, if A(1) > A(2), then exchange the contents of
A(l) and A(2). Then move on and check the next pair. If A(2) < = A(3), then move
on to the next pair. But, if A(2) > A(30), exchange their contents. Continue in this
way until no further changes occur. The numbers are then in order.

Solution to Sort of a Problem Problem

Exchange Sort

Enter the numbers that you want to sort in memories A(1) through A(20). You want
to examine each pair and exchange the pair, if necessary, so that the smaller is in the
lower numbered location. Do this until no further exchanges occur. When this hap
pens, the items are in proper order.

5 REM INPUT 2 0 I TEMS
1 0 FOR Z= 1 TO 2 0 : INPUT A (Z) : NEXT Z
2 0 Y=0 : REM Y W I LL COUNT EXCHANGES

2 5 REM RUN THROUGH ALL PAIRS
30 FOR X= 1 TO 1 9
4 0 W=A (X) : REM SAVE A COPY OF A (X)

4 5 REM I F A (X) <=A (X+ 1) G O T O NEXT PAIR
50 I F W<=A (X+ 1) THEN 9 0

5 5 REM I F A (X) > A (X+ 1) EXCHANGE
6 0 A (X) =A (X+ 1)
7 0 A (X+ 1) =W
8 0 Y=Y+ 1 : R E M COUNT EXCHANGES

90 NEXT X

9 5 REM I F NO EXCHANGES , I TEMS ARE I N ORDER
1 0 0 IF Y=0 END

1 0 5 REM OTHERW I S E RESET COUNTER AND DO AGAI N
1 1 0 Y=0
1 2 0 GOTO 3 0

This program can be made more efficient. Consider what happens when the big
gest item is encountered. It is exchanged with each succeeding item until it rises to the
top of the list. On the next pass the next largest item rises as far as it can in the list. No
later item will rise further than the position of the last exchange. The last exchange
made on any pass marks the top of the unsorted items. Those items above this point are

212 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

in their final position and need not be considered in later passes through the list. You
can use this observation by recording the last exchange position in T and ending the
pass at that point. Here are the changes and additions to improve the previous
program:

2 2 T = 1 9
W FOR X= 1 TO T
a 2 s x+ 1

1 1 5 T = S

Since the items rise like bubbles in the list, this type of sort is often called a
"bubble sort."

Hint to Sort of a Problem Problem

Selection Sort

This method is the one that the coach used to find the biggest football team. He looked
at all the players until he found the biggest. The biggest was called aside. Next, the
coach looked at the remaining players until he found the biggest of the remaining
players. That player was called to the side of the previously chosen player. This contin
ued until all the players were in the new line, ordered from the smallest to the biggest.
The coach could have called out the smallest players first just as easily.

Solution to Sort of a Problem Problem

Selection Sort

Once again, input 20 numbers and place them in memories A(l) through A(20). Then
run through the list and find the smallest item. Store it in A(3 1). Next run through the
list and find the next smallest. Store it in A(32). There are two difficulties to be con
sidered. First, how does one find the smallest item in the list? Second, how does one
avoid finding the first item again on the second run through the list?

To find the smallest item in a list you can hold a competition. The winner of any
round competes at the next round. Store the current lowest number in W. To start, let
A(l) be lowest. W = A(l) . Next, compare W with A(2), A(3), and so on until we find
a lower number, which is then stored in W. This new W is compared to the items re
maining. At the end of the run through the list, W will contain the lowest number in
the list.

Now you want to take this number out of the list so that it does not compete in
the search for the second lowest number. The easiest thing to do is replace that item
with a number so large that it is effectively infinite. Then it will not be considered be
fore the other numbers in the list have been sorted out. Here is a routine which uses
these observations.

5 REM INPUT THE I TEMS
1 � FOR X = 1 TO 2 � : INPUT A (X) : NEXT X
2 � Z = 3 � : REM Z COUNTS POS I T I ON I N L I S T

STORING, SORTING, AND SEARCHING 213

3 0 FOR V= 1 TO 2 0 : REM EACH PASS F I NDS ONE I TE M
4 0 W=A (1) : Y= 1 : REM A (1) STARTS AS SMALLES T
5 0 YOR X=2 TO 20 : REM S EARCH L I S T
6 0 I F W < =A (X) THEN 9 0 : REM W S T I L L SMALLEST
7 0 W=A (X) : REM A NEW SMALLEST
8 0 Y=X : REM STORE POS I T I O N OF SMALLEST I N Y
9 0 NEXT X

9 5 REM SET A (Y) T O I NF I N I T Y
1 0 0 A (Y) =9 9 9 9 9 9

1 0 5 REM STORE NEW NUMBER W
1 1 0 Z=Z+ 1
1 2 0 A (Z) =W

1 3 0 NEXT V

Hint to Sort of a Problem Problem

Enumeration Sort

Here is a method you might use if the photographer tells your group to line up by
height. Just count how many persons are shorter than you. They must all stand to your
left. If five people are shorter than you, then you must be the sixth in line.

Solution to Sort of a Problem Problem

Enumeration Sort

For each item, you wish to count the number of items smaller than the given item. The
final position of the item will be the nwnber of smaller items, plus 1 . Store the position
in a separate list. Store the final position number of A(1) at A(3 l), the position num
ber of A(2) at A(32), and so on. For example, if the final position of A(l) is fifth, then
A(3 1) = 5. Here is a program based on this approach.

5 REM I NPUT 2 0 NUMBERS
1 0 FOR Z= 1 TO 2 0 : I NPUT A (Z) : NEXT Z

1 5 REM A (3 1) , . . . , A (5 0) ARE COUNTERS
2 0 FOR Z = 3 1 TO 5 0 : A (Z) = 1 : NEXT Z

2 5 REM DETERM I N E HOW MANY I TEMS ARE SMALLER THAN A (Z)
3 0 FOR Z = 1 TO 2 0

3 5
4 0
5 0
6 0

REM COMPARE A (Z) W I T H EACH A (Y)
FOR Y= 1 TO 2 0

I F A (Y) <A (Z) LET A (Z+ 3 0) =A) Z + 3 0) + 1
NEXT Y

7 0 NEXT Z

8 0 REM PRINT POS I T I O N NUMBERS
9 0 FOR Z = 3 1 T O 50 : PRINT A (Z) : NEXT Z

Big Merger Problem

Lornalam and Smalley are cooperating on the checkbook this month. Lornalam took
half the pile of checks and arranged them by the day of the year on which they were

214 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

cashed. Smalley did the same with his half. Now they need to merge the two ordered
piles into a single ordered pile.

It would be interesting to make a computer version of this situation. Suppose
that the dates of Lornalam's I 0 checks have been ordered and stored in A(I) through
A(I O), and that Smalley's dates have been ordered and stored in A(I 1) through
A(20). The memory locations each contain a number between 1 and 356 which repre
sents the day of the year on which the check was cashed. Write a program which
merges these two sequences and stores the result in A(3 1) through A(50).

Hint to Big Merger Problem

Check the first element in each list. Which is smaller, A(I) or A(I I) ? If, for example,
A(I) is the smallest, then the contents of A(I) becomes the first element A(3 1) of the
merged list. Next, consider A(2) and A(I I) . Which is the smaller? The smaller goes
into A(32). If, for example, A(I I) is the smallest, then you would next compare A(2)
and A(I 2) .

ff one of the lists runs out, then all the elements in the remaining list go to the
end of the merged list.

Solution to Big Merger Problem

The program has some small subtasks. First, the front items in the two lists are com
pared. Next, the smaller item is transferred to the merged list. Next, the index for the
list from which the smallest item came is raised by I to point to the next item in that
list. Also, the index in the merged list must be raised by I to point to the next vacant
position. It is also necessary to check whether you are at the end of the list. If you are
at the end of the list, then all the remaining items in the other list must be transferred
to the end of the merged list.

5 REM INPUT THE TWO L I ST S
1 � FOR Z = 1 T O 1 � : I NPUT A (Z) : NEXT Z
2� FOR Y= 1 1 TO 2 0 INPUT A (Y) : NEXT Y

2 5 REM SET L I S T P O I NTERS
3 � Z = 1 : Y= 1 1 : X= 3 1
3 5 REM Z INDEXES THE F I RS T L I S T , Y THE S ECOND L I S T ,

X THE MERGED L I S T

4 5 R E M CHECK I F E I TH E R L I S T I S DONE
5 � IF Z > 1 � THEN 1 1 5
6 � I F Y > 2 � THEN 1 � 5

6 5 REM F I N D AND STORE SMALLEST , THEN RESET POI NTERS
7 � T F A (Z) <A (Y) . LET A (X) =A (Z) : z =z + 1 : GO T O 9 �
8 � I F A (Y) <=A (Z) L E T A (X) =A (Y) : Y= Y + 1
9 � X=X+ 1

1 � � GOTO 5 �

1 � 5 REM ADD REMAI NDER O F F I RST L I S T T O MERGED L I S T
1 1 � FOR W=Z T O 1 � : A (X) =A (W) : X= X+ 1 : NEXT W : END
1 1 5 REM ADD REMAI NDER OF S ECOND L I S T TO MERGED L I S T
1 2 � FOR W=Y TO 2 � : A (X) =A (W) : X=X+ 1 : NEXT W : END

1 2 5 REM D I SPLAY THE RESULTS
1 3 � FOR X= 3 1 TO 5 � : P R I NT A (X) : NEXT X

We input the following lists:

A(l) 1
A(2) 20
A(3) 30
A(4) 40
A(5) 50
A(6) 60
A(7) 70
A(8) 80
A(9) 90
A(l O) 1 00

A(l 1)
A(1 2)
A(13)
A(1 4)
A(1 5)
A(1 6)
A(l 7)
A(1 8)
A(1 9)
A(20)

STORING, SORTING, AND SEARCHING 215

24
27
45
5 1
55
65
72
95
1 90
300

After the run is complete, type RUN 1 30 to see the merged list. We found:

A(3 1) 1
A(32) 20
A(33) 24
A(34) 27
A(35) 30
A(36) 40
A(37) 45
A(38) 50
A(39) 5 1
A(40) 55
A(4 1) 60
A(42) 65
A(43) 70
A(44) 72
A(45) 80
A(46) 90
A(47) 95
A(48) 1 00
A(49) 1 90
A(50) 300

A perfectly ordered, merged list

Summing Up Chapter Ten

You learned in this chapter that the TRS-80 Pocket Computer is adept at creating and

manipulating data. It can search through lists of numbers, pick out the largest or

smallest number, rearrange the numbers in ascending or descending order, reverse

their order, or merge numbers from lists into a single ordered list. We haven't ex

hausted the Pocket Computer's manipulating capabilities, but we've given you an in-
kling of what can be done.

·

You, no doubt, will think of other uses of the Pocket Computer's manipulating

abilities.

CHAPTER ELEVEN

Chaining Programs from Cassette

The Pocket Computer has enough internal memory to handle most of the tasks that
you will find for it. But memory storage is like money; no amount ever seems like
enough. You will certainly find, some sunny morning, that your program is too big and
has just too much data to store in the internal memory. When that day comes, you will
be delighted to find that the folks at Radio Shack have thoughtfully furnished the
Pocket Computer with the ability to store information outside the machine.

In Chapters 3 and 4 you learned how to SA VE and LOAD programs and data
on and from cassette tape. This chapter t.ells how to CHAIN (or connect) a program
stored on cassette tape to a program currently in memory. However, there are several
precautions and restrictions that must be observed.

You will learn:

• how to use the CHAIN statement;
• how the original section of a program is replaced by the chained section;

and
• how variable values are passed from an original section of a long program

to the chained section.

Chain Gang

A chain is useful for pulling up an anchor, or for holding up a swing, or for holding a
large dog. Chains are certainly useful. Your TRS-80 Pocket Computer comes with a
handy CHAIN statement. Like other chains it allows you to pull in a needed item.

Jn the computer case, the CHAIN statement pulls in programs from the cassette
recorder and runs them. It allows you to break very large programs that won't entirely
fit in internal memory into smaller ones, then call and run the pieces.

To keep things simple, we will not use large programs in our example. However,
you can use your imagination as we demonstrate how the CHAIN statement works.
First we need to have a program on the cassette. We will later use the CHAIN state
ment to call and run this program.

s-::-:-:-:;:c:-::-:c:-:,-:-�--:---,..,. __ -,-,--_ ----,------�----- --,--,- ,-�, _,,_,-,_ -_,----_ ----c- .c-----�--�-------- - -- ---

CHAINING PROGRAMS FROM CASSETTE 217

The Program to be CHAINed

1 � P R I NT ' ' CH A I N WORKS ' '
2 � P R I NT ' ' AND WORKS ' '
3 � ' ' PUNT ' ' : P R I NT ' ' AND WORKS ' '

Load the program to be chained into the computer's memory. Save this microprogram
on cassette under the name "MICRO", using the command:

CSA VE ' ' M I CRO ' '

Clear the computer's internal memory by typing:

NEW

"MICRO" is now on the cassette but not in the computer.
Now use your imagination. Think of the next program as being a very long one

that just fits in the computer's internal memory. It will use the CHAIN statement to
call in the "MICRO" program that you just recorded and run it.

The BIG Program Dsing CHAIN

1 � P R I NT ' ' DOES CHAIN WORK? ' '
2 � CHAIN - ' ' MI CRO ' '

Enter this program in the computer's memory. Since it will chain the program on cas
sette, you must prepare the recorder so that "MICRO" will be ready to run.

I . Rewind the recorder to the beginning of "MICRO".
2 . Press the PLAY button on the recorder.

Now all is ready. Run the program in the computer. It will print the question:

(, ___
D
_

o

_
E
_

s

_

c

_
H

_
A

-
I N

_

w

_

o

_
R
_

K
_

?

�

Press the ENTER key and the second program will be chained and run. You will see:

C CHAI N WORKS) --�--

218 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Press ENTER

Press ENTER

C AND WORKS) ---'------

C AND WORKS) ----
Notice line 30 of the program to be chained. We used a label "PUNT" that

seems unnecessary. Sometimes you may not want to run the complete chained pro
gram. The CHAIN statement has some options that may be used. The statement:

CHAIN ' ' MI CRO ' ' , ' ' PUNT ' '

will chain the complete program, "MICRO", but will execute it starting from the la
bel, "PUNT". In this case, only line 30 would be executed and the display would show
only:

�'
���

A-N-D�w_
o
_
R
_
K
�S ����---�

You can also use a line number instead of a label. The statement:

CHA I N I ' MI CRO ' ' , 2 0

would chain the program, "MICRO", and begin execution at line 20. In this case the
display would show:

Press ENTER

� AND WORKS) '------

C AND WORKS) ----

from line 20

from line 30

CHAINING PROGRAMS FROM CASSETIE 219

Three Links Problem

Here are three short programs that have been saved on cassette with the names
"ABBA", "DABBA", and "DOO".

1 0
2 0
3 0

1 0
2 0
3 0

1 0
2 0
3 0

I ' ABBA ' I
PAU S E I ' ABBA ' I
CHA I N ' ' DABBA ' '

' ' DABBA ' '
PAU S E
CHA I N

' ' DABBA ' '
I I 000 I I

I I DQO I l
PAU S E
CHAIN

I 1 D00 1 I

I ' ABBA ' I

The programs are recorded on the cassette in this order:

r 3 rd 2 nd

" 000 " " DABBA"

1 st

"A BBA" j
Tape movement __..

The tape has been rewound to the beginning and is ready to play.

a. Describe what happens if you load and run the program "ABBA".

The tape is rewound and ready to play again.

b. Describe what happens if you load and run the program "DABBA".

The tape is once again rewound and ready to play.

c. Describe what happens if you load the program "DOO".

220 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Solution to Three Links Problem

a. When you load and run the program "ABBA", it prints:

(__ AB-BA __)
"DABBA" is then chained. It prints:

c-�-D-AB-BA����-)

"DOO" is then chained. It prints:

(__ Do_o
_

_)
The cassette advances searching for "ABBA". Alas, "ABBA" will never be

found since it is back in the other direction at the beginning of the tape.

b. When you run the program "DABBA", the cassette searches past the
program "ABBA". It finds "DABBA" which runs and prints:

C DABBA) ----
"DOO" is then chained. It prints:

(__ Do_o __)
The cassette then moves, searching for "ABBA". Of course, "ABBA" has al

ready gone by and can't be found.

c. When you run the program "DOO", the cassette searches past "ABBA"
and "DABBA" and finally finds "DOO". It prints:

(
_

_ Do_o __)
and then attempts to chain "ABBA". "ABBA" cannot be found since it is back
in the other direction.

CHAINING PROGRAMS FROM CASSETTE 221

Precautions When Using CHAIN

In Chapter 3 you found out that when a program was loaded from tape with the com
mand CLOAD, any programs in the computer's internal memory were erased. The
same thing happens when the CHAIN statement is used. The program, originally in
memory, that uses the CHAIN statement is erased when the new program is read in
from the cassette. You cannot return from the chained program to the original pro
gram. The purpose of the CHAIN command is to allow you to use programs too big to
fit in the internal memory. When the second part is CHAINed, the first part must be
erased to make room for the second part.

Using Variables in Chained Programs

Even though the original program is erased when a second program is chained in, the
values for the variables used in the original program are still in memory. Remember
how memory is used? The program is stored from one end while values for variables
are stored from the other

1 1 I I I I I I I 1 1 1 1 1 1 1 l 1 1 1 1 1 1 1 1 I I 1 1 1 1 1 1 1
Variables ___. .._.__ Program

As long as the chained program is not so big as to overlap the area used for the varia
bles, the values for the variables will still be there.

1 1 1 1 1 1 1 1 1 1 1 1 1
_____ Original Program _____ _,

erased) Thrnm"'"''"'

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
'---v----' l ___ Chained program ____ j

Unused entered
Memory

The CHAIN statement is similar to the CLOAD statement, with these
important differences:

1 . The chained program is not only loaded but is also executed.
2. Any old program is erased, but the values assigned by the old program

remain in memory.

222 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Sample Use of CHAIN Statement

Here are two programs that demonstrate the use of the CHAIN statement with data
transferred from the original program to the Chained Program.

Original Program

1 0 FOR X = 1 TO 5
2 0 A (X) = X+ 1 0
3 0 NEXT X
4 0 CHA I N ' ' NEXT ' '

. Chained Program

1 0 ' ' NEXT ' '
2 0 FOR X = 1 TO 5
3 0 P R I NT A (X)
4 0 NEXT X

Enter the Chained Program into the Pocket Computer's memory. Connect the
cassette recorder interface and the recorder. Rewind the tape and press the RECORD
and PLAY buttons on the recorder. Then type:

CSA VE ' ' NEXT ' '

on the Pocket Computer and press the enter button.
After the Chained Program has been recorded, rewind the tape to the beginning

of the tape. Now type:

NEW

and enter the original program in the Pocket Computer's memory. If you have re
wound the tape (if not do so now), press the PLAY button so that the recorder is ready
to read in the Chained Program. Set the Pocket Computer to the RUN mode and run
the original program.

The original program is executed and the CHAIN statement at line 40 causes
the Chained Program to be read in from the cassette recorder and executed. After this
happens, the value for A(I) is seen on the display (caused by line 30 of the Chained
Program). Press ENTER to see each of the five values A(l) through A(5).

CHAINING PROGRAMS FROM CASSETTE

c 1 1) A(l)

c 1 2) A(2)

(1 3) A(3)

(1 4) A(4)

c 1 s) A(5)

As you can see, the values for the variables were passed on from the original pro
gram to the Chained Program. To see that the original program has been erased, ac
cess the PRO mode and list the program in memory. The Chained Program will be
there, but the original program will be gone.

Summing Up Chapter Eleven

When programs are so long that you must use the CHAIN statement, be sure to plan
the division of the long program carefully. If very much data are to be passed between
the sections of the program, be sure there is room to include them in the first section
and room for them to be saved for the second section.

More than two sections may be chained, and the same precautions apply to each
use of the CHAIN statement. With careful use, the CHAIN statement extends the
power of the Pocket Computer far beyond the internal memory, making the execution
of very long programs possible.

223

CHAPTER TWELVE

The TRS-80 Pocket Computer Printer

The Pocket Computer can pump numbers and letters out faster than you can write
them down. In this chapter you'll learn how to use the TRS-80 printer to keep up with
the flood of information and make a lasting impression of your work. You will learn;

• how to set up the printer;
• how to list your programs on the printer;
• how the printer places numbers and letters on the page;
• how to format numbers and letters on the page;
• how to use the printer to graph functions; and
• how to use the computer to store and print messages in the program area.

Getting Started

Unpack the printer. Is it blinking at you? The printer may have been packed with the
switches on and the blinking light means that the battery is low. Turn the printer
power switch off, and the blinking will stop. The printer has a nickel cadmium battery
that can be recharged. (See Appendix E.) Plug the AC adaptor that was furnished
with the printer into the receptacle on the back of the computer. Then plug the other
end of the adaptor into a convenient wall outlet. The battery is now being fed. You
may operate the printer while the battery adaptor (also used to charge the battery) is
plugged into the wall socket.

Next, turn the Power switch and the Print switch ON. Now press the button on
the face of the printer that's marked D. That's the paper advance button. If you have
paper in the printer' it comes out. If there is no paper in it, read on. If you already have
installed the paper, skip over this section. You may want to come back to it when it's
time to install a new roll of paper later on.

THE TRS-80 POCKET COMPUTER PRINTER 225

Installing Paper in Printer

Look closely at the left edge of the front of the printer. Next to the paper slot you will
see a round dot and the word PUSH.

·

0
PUSH

=---paper
slot

Give the dot a push and off comes the cover. Inside you can see the ribbon cartridge.
It's shaped like this:

Sometime you may need to pop that out. Right now though, focus on the clear plastic
cover at the top of the printer above the paper cover that you just removed. Lift the
front edge of this cover and it will rotate on hinges toward the back of the printer. In
side the space that is revealed, the paper roll fits. Open one of those small paper rolls.
The end of the roll may be a bit ragged by the time that you get the roll open. Cut the
ragged end of the paper off with scissors. This will make the paper go in easily without
any snags.

The paper enters the printer through the slot of the compartment used to hold
the paper roll . Slide the paper into the slot and, at the same time, push the paper ad
vance button D. Out comes the paper, toward the front of the printer. You should hold
the button down until about one-half inch of paper feeds through. Next rotate the pa
per compartment cover back over the roll of paper. Slip the ribbon cover over the pro
truding one-half inch of paper. The paper goes through the slot with the jagged edge.
Now snap the ribbon cover back into place and everything is ready.

Attaching the Computer

Directions for attaching the computer to the printer can be found on the printer itself.

1 . Turn the printer power and the Pocket Computer off.
2 . The bump at the upper right-hand corner of the printer interface fits

neatly into a corresponding slot on the bottom of the computer. First, fit
the bump into the slot; then slide the computer to the left, onto the
connector prongs.

It's as simple as that. No need to force anything. Try putting the computer in and out a
few times to be sure that you have the knack of it.

Now that the interface is connected, you can turn the printer Power switch ON.
Also, turn on the Print switch. Last of all, turn on the Pocket Computer. In fact, push
the computer ON button twice. The first push turns the computer on. The second push
tells the computer that the printer is attached.

226 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Listing a Program

Use the MODE key (of the computer) to put the computer into the PRO mode. Then
type in this line.

1 i3 PRINT I I WORKS I I

Press the ENTER key and then type LIST. (Press the ENTER key again.) The
printer leaps into action and lists the one-line program:

1 i3 : PRINT I I WORKS
--------- The ending quote appears on

the second line.

In other words, when the computer is in the PRO mode, the LIST command will send
the listing of the program to the printer.

Printing from a Program

Now press the MODE key several times to put the computer into the RUN mode.
Type RUN and press the ENTER key. The printer will print:

The program ends and the computer stops. Notice that the characters in the word
WORKS were printed at the left side of the paper. Now let's go back and add another
line to the program. Put the computer back into the PRO mode and add this line to the
program.

2i3 GOTO 1 i3

When you have entered line 20; type LIST to print the two-line program on the
printer.

Display Printer

(
-�-L-I S-T����-

) 1 i3 : PRINT ' ' Works

2 i3 : GOTO 1 i3

THE TRS-80 POCKET COMPUTER PRINTER 227

Now run the program by putting the computer into the RUN mode and typing
RUN.

WORKS
WORKS
WORKS
WORKS
WORKS
WORKS
WORKS
WORKS
WORKS

When you've seen enough, press the computer's ON button to break the program.
The PRINT command works differently now that the printer is attached and

turned on. The computer does not stop after each PRINT statement as it did without
the printer. You don't need to press ENTER to tell the computer that you are ready to
go on. The computer keeps on working when the printer is functioning in place of the
display.

You saw how the printer printed the string "WORKS" on the left side of the pa
per. Let's try a string of numbers now. Put the computer in the PRO mode and change
line 1 0 to:

1)l P R I N T ' ' 1 2 3 4 5 6 7 8 9)l 1 2 3 4 5 6 7 ' ' ...-----� It's still a string
because of the quotes.

Use the MODE key to get into the RUN mode and run the program.

a. How many characters will the printer put on one line? _____ _

a. The printer prints:

1 2 3 4 5 6 7 8 9)l 1 2 3 4 5 6
7
1 2 3 4 5 6 7 8 9)l 1 2 3 4 5 6
7
1 2 3 4 5 6 7 8 9)l 1 2 3 4 5 6
7

Press the ON button of the
computer to break the program.

A printer line holds exactly 1 6 characters. The 1 7th character wraps around to
the next line.

Now, let's try a shorter number that is not enclosed in quotes to see whether the
printer treats strings and numerics alike. Change line 1 0 to:

1)l P R I NT 1

228 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

a. If you run the program now, on what part of a line will the printer print
the number one? ���������

The printer prints numbers on the right side of the page like this:

You can easily print tables for special functions using your printer. Here is a pro
gram that prints out the squares of numbers:

The Program as Listed
on the Printer

1 ji! : FOR X= 1 TO 1 ji!
2 jil : Y=X * X
3 ji! : P R I NT Y
4 jil : NEXT X

The RUN Printout

1 .
4 .
9 .

1 6 .
2 5 .
3 6 .
4 9 .
6 4 .
8 1 .

1 ji!ji! .

a. If you use the same program with the exception of line 10, which.is
changed to:

1 ji! Y = yX

what will the printout of the run look like: ?

a . The numbers are printed at the right side of the page, but now there is an
occasional decimal point. The printout looks like this:

1 .
1 . 4 1 4 2 1 3 5 6 2
1 . 7 3 2 ji! 5 jil 8 ji! 8

2 .
2 . 2 3 6 ji! 6 7 9 7 7
2 . 4 4 9 4 8 9 7 4 3
2 . 6 4 5 7 5 1 3 1 1
2 . 8 2 8 4 2 7 1 2 5

3 .
3 . 1 6 2 2 7 7 6 6

THE TRS-80 POCKET COMPUTER PRINTER 229

Formatting Data for Printing

The numbers are a bit difficult to read in the previous jagged format. Let's see if we
can tidy up the line of numbers by using the USING statement discussed in Chapters
2 and 7. Add:

5 US I NG ' ' ## . #### ' '

By listing the modified program we see:

S : US I NG ' • ## . ##
' '

1 0 : FO R X= 1 TO 1 0
2 0 : Y= yX
3 0 : PR I NT Y
4 0 : NEXT X

a . Now what happens when you RUN this program? Look at the printout of
the previous program and show how line 5 changes the format of the
printout.

a. The USING statement formats the number. The printout now looks like
this:

'

1 . 0 0 0 0
1 . 4 1 4 2
1 . 7 3 2 0
2 . 0 0 0 0
2 . 2 3 6 0
2 . 4 4 9 4
2 . 6 4 5 7
2 . 8 2 8 4
3 . 0 0 0 0
3 . 1 6 2 2

There i s a way to place the numbers closer to the left side of the page. Change
line 30 to:

no space between quotes

230 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

The printer puts strings at the left side of the paper. Even the string ' ' ' ' that has
nothing in it starts on the left. The printer prints nothing, and then packs the number
right up against it at the left edge. The printout looks like this:

1 . JJ JJ JJ JJ
1 . 4 1 4 2
1 . 7 3 2 JJ
2 . JJ JJ JJ JJ
2 . 2 3 6 JJ
2 . 4 4 9 4
2 . 6 4 5 7
2 . 8 2 8 4
3 . JJ JJ JJ JJ
3 . 1 6 2 2

To space the numbers five positions to the right of the left side of the paper change line
30 to:

·

3 JJ PRINT ' ' c----------__
four spaces between quotes

Here is the difference in spacing:

1 . JJ JJ JJ JJ
1 . 4 1 4 2
1 . 7 3 2 JJ
2 . JJ JJ JJ JJ
2 . 2 3 6 JJ
2 . 4 4 9 4
2 . 6 4 5 7
2 . 8 2 8 4
3 . P P P JJ
3 . 1 6 2 2

1 . JJ JJ JJ JJ
1 . 4 1 4 2
1 . 7 3 2 JJ
2 . P JJ PP
2 . 2 3 6 JJ
2 . 4 4 9 4
2 . 6 4 5 7
2 . 8 2 8 4
3 . JJ JJ P P
3 . 1 6 2 2

---one space over with the empty
string I I I I

---five spaces over with the empty
string I I I I

You can also put two values on the same line. Change line 30 to:

3 JJ PRINT X Y

THE TRS-80 POCKET COMP,UTER PRINTER 231

Now X and Y will be printed on the same line when the program is run, like this: ·

Printer

1 . 0 0 0 0 1 . 0 0 0 0
2 . 0 0 0 0 1 . 4 1 4 2
3 . 0 0 0 0 1 . 7 3 2 0
4 . 0 0 0 0 2 . 0 0 0 0
5 . 0 0 0 0 2 . 2 3 60
6 . 0 0 0 0 2 . 4 4 9 4
7 . 0 0 00 2 . 6 4 5 7
8 . 0 0 0 0 2 . 8 2 8 4
9 . 0 0 0 0 3 . 0 0 0 0

Display

(3 0 : 6 ·)

Only nine pairs ofvahies were printed. What happened to the tenth pair? Notice
the computer display as the run stopped. It shows an error at line 30. It is error code
number 6, showing an error in format. Although the U S I NG • • ## . #### • • statement
on line 5 reserves two positions to the left of the decimal point, the left-most position is
saved for the sign of the number (plus or minus). If the sign of a value is positive, it is
not printed. However, the USING statement saves a place for it just the same. There
fore, when X = 1 0, there is no room for the sign and two digits. The computer stops
and gives the error message. To correct this, change line 5 to:

5 U S I NG ' ' ### . #### ' '

Now, RUN the program and all ten pairs of X,Y values will be printed.

With U S I NG ' ' ## . #### ' '

1 . 0 0 0 0 1 . 0 0 0 0
2 . 0 JJ 0 0 1 . 4 1 4 2
3 . 0 JJ JJ 0 1 . 7 3 2 0
4 . 0 JJ JJ 0 2 . JJJJ 0 0
5 . 0 0 0 0 2 . 2 3 6 JJ
6 . 0 0 JJ 0 2 . 4 4 9 4
7 . 0 JJ 0 0 2 . 6 4 5 7
8 . JJ JJ JJ JJ 2 . 8 2 8 4
9 . 0 0 0 0 3 . 0 0 0 0

With U S I NG ' ' ### . #### ' '

1 . 0 0 0 0 1 . 0 0 0 0
2 . 0 0 0 0 1 . 4 1 4 2
3 . 0 0 0 0 1 . 7 3 2 0
4 . 0 0 0 0 2 . 0 0 0 0
5 . 0 0 0 0 2 . 2 3 6 0
6 . 0 JJ JJ 0 2 . 4 4 9 4
7 . 0 0 0 0 2 . 6 4 5 7
8 . 0 0 JJ0 2 . 8 2 8 4
9 . JJ JJ � 0 3 . 0 0 0 0

1 0 . 0�JJJJ 3 . 1 6 2 2

232 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

If you remove the USING statement at line 5, you get a very hard-to-read out
put. The numbers are packed together like this:

1 . 1 .
2 . 1 . 4 1 4 2 1 3 5 6 2
3 . 1 . 7 3 2 f.l 5 lrn (.l 8
4 . 2 .
5 . 2 . 2 3 6(.l 6 7 9 7 7
6 . 2 . 4 4 9 4 8 9 7 4 3
7 . 2 . 6 4 5 7 5 1 3 1 1
8 . 2 . 8 2 8 4 2 7 1 2 5
9 . 3 .
1 (.l . 3 . 1 6 2 2 7 7 6 6 .

To get better spacing, you can put i h an empty string. Change line 30 to:

3(.l P R I NT X ; "

a. Show how this change would effect the output.

a. 1 . 1 .
2 . 1 . 4 1 4 2 1 3 5 6 2
3 . 1 . 7 3 2 f.l 5 f.l 8lJ8
4 . 2 .
5 . 2 . 2 3 6 � 6 7 9 7 7
6 . 2 . 4 4 9 4 8 9 7 4 3
7 . 2 . 6 4 5 7 5 1 3 1 1
8 . 2 . 8 2 8 4 2 7 1 2 5
9 . 3 .
1 lJ . 3 . 1 6 2 2 7 7 6 6

three blanks

Here is another variation that provides a very neat and readable printed output.

change:
add
add:

3lJ PRINT ' ' X= ' ' ; X

3 2 P R I NT ' ' Y= ' ' ; Y

3 4 P R I NT Prints a blank line

A listing Of our program is now:

1 lJ : FOR X= 1 TO 1 f.l
2 lJ : Y= yX
3 lJ : P R I NT ' ' X= ' ' ;

x
3 2 : P R I NT ' ' Y=

y
3 4 : P R I NT
4 lJ : NEXT X

' ' . '

THE TRS-80 POCKET COMPUTER PRINTER 233

The output looks like this:

X= 1 .
Y = 1 .

X= 2 .
Y = 1 . 4 1 4 2 1 3 5 6 2

X= 3 .
Y = 1 . 7 3 2)1 5)1 8)1 8

X= 4 .
y= 2 .

X= 5 .
Y = 2 . 2 3 6)1 6 7 9 7 7

X = 6 .
Y = 2 . 4 4 9 4 8 9 7 4 3

X= 7 .
Y = 2 . 6 4 5 7 5 1 3 1 1

X= 8 .
Y = 2 . 8 2 8 4 2 7 1 2 5

X= 9 .
Y = 3 .

X= 1)1 .
Y= 3 . 1 6 2 2 7 7 6 6

How to Sfore Messages

The Pocket Computer can be used to store long messages. You don't need to write an
executable program to do it. It is REMarkably simple. Try this:

Put the computer in the PRO mode. Type NEW to clear the program memory.
Now type this line and enter it.

1 ' ' S END L I ST S T O MEMORY

Now list the program. There are no surprises. You see the program line that you put
in, with the addition of a colon following the line number.

1 : ' ' S END L I ST S TO MEMORY

The quote mark tells the computer not to interpret the sentence. it works just like a
REM statement.

234 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Type:
What is the maximum length for a message on a program line? Give this a try.

1 ' ' ' 1 2 3 4 5 6 7 8 9 (1 1 2 3 4 5 6 7 8

Keep going until the computer won't hold any more characters on the display.

a. How many characters can be stored on one program line? _____ _

a. You have probably noticed that the computer leaves a space at the left
side of the page when you list a program. The computer saves the first
three spaces for the line number. The colon comes next, then the program
lines. One program line holds (or stores) 80 characters, if you count the
line number, the colon, the quote mark, and all the characters typed in
followihg the quote.

The length of a line displayed on the computer and the length of a printed line
are quite different. Here are some examples of stored messages printed by the follow
ing method:

1 . Type in the line numbers and messages.
2 . When al l are typed in, type the command LIST and press the ENTER

key.

1 : ' ' 1 2 3 4 5 6 7 8 9 (1 1
2 3 4 5 6 7 8 9 (1 1 2 3
4 5 6 7 89 (1 1 2 3 4 5
6 7 8 9 (1 1 2 3 4 5 6 7
8 9 (1 1 2 3 4 5 6 7 8 9
(1 1 2 3 4 5 6 7 8 9 (1 1
2 3 4 5 6

2 : " THE TRS - 8 0
POCKET COMPU
TER IS DES I G
N E D TO HOLD
MES SAGES I N
THE PROGRAM
MEMORY

3 : ' ' TH E STANDAR
D KEYBOARD M
AKES T Y P I NG
FAST AND EAS
Y .

4 : ' ' THE I N S ERT
AND DELETE K
EYS ALLOW YO
U TO E D I T L I
NES Ii E F O R S T
ORING OR T Y P
I NG .

5 : ' ' TH E POCKET
COMPUTER CAN
EAS I LY $TOR
E A FULL , DO
UBLE S PACED ,
PAG E .

The Pocket Computer
can store long lines
of text.

THE TRS-80 POCKET COMPUTER PRINTER 235

Graphing with the Printer

The TRS-80 printer can be used to do simple graphing. The graphic area is 1 6 units
wide and as long as your paper tape.

Here is a program that allows you to print a specified number of asterisks [*] on
a line. The program takes the number of asterisks that you want printed as input and
then prints them. We'll use this later in other graphing programs, so you may want to
save the program with your cassette recorder.

1 0 I NPUT y : GOSUB ' ' GRAPH ' ' : GOTO 1 0 ------ to inpu"t data

2 00 ' ' GRAPH ' '
2 1 0 REM CHECK S I Z E OF I NPUT
2 2 0 IF Y < 0 LET Y =0
2 3 0 I F Y > 1 6 LET Y= 1 7
2 4 0 GOSUB 3 0 0+ Y .-.-------------�
2 5 0 RETURN

3 0 0 PRI NT
3 0 1 P R I NT
3 0 2 P R I NT
3 0 3 P R I NT
3 04 P R I NT
3 0 5 P R I NT
3 0 6 P R I NT
3 0 7 P R I NT
3iJ 8 PRI NT
3 0 9 P R I NT
3 1 0 P R I NT
3 1 1 P R I NT
3 1 2 P R I NT
3 1 3 P R I NT
3 1 4 P R I NT
3 1 5 P R I NT
3 1 6 P R I NT
3 1 7 P R I NT

' ' < ' ' : RETURN
' ' * ' ' : RETURN
I I * * I I : RETURN
I I * * * I I : RETURN
I I * * * * I I : RETURN
I I * * * * * I I : RETURN
I . • * * * * * * I I : RETURN
I I * * * * * * * I I : RETURN
I I * * * * * * * * I I : RETURN
I I * * * * * * * * * I I : RETURN
I I * * * * * * * * * * I I : RETURN
I I * * * * * * * * * * * I I : RETURN
I I * * * * * * * * * * * * . , I : RETURN
I I * * * * * * * * * * * * * I I : RETURN
I I * * * * * * * * * * * * * * I I : RETURN
I I * * * * * * * * * * * * * * * I I : RETURN
I I * * * * * * * * * * * * * * * * I I : RETURN
' ' . > ' ' : RETURN

pick the right number
of asterisks

.,

236 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

We used these inputs with the graph program to produce a graph of some stock
market prices:

1 , 2, 3, 4, 5, 7, 9, 1 2; 1 1 , 8, 5, 6, 8, 7, 9, 1 4, 1 6, 1 3, 1 2

..
..
..

..
..

..
..

..
..

..
..

..

You probably have some numbers of your own that need graphing. Give them a try.

Graphs of Functions

You can easily change the previous program to plot graphs of functions. Here is a pro
gram that uses the graph subroutine to graph the function Y = SIN(X).

1 � DEG .
2� FOR X = � TO 3 6 � STEP 1 8
3 � Y = S I N (X)
4 � Y = I NT (7 *Y + 8 . 5) ------ This line scales the number
5 � GOSUB ' ' GRAPH ' '. to fit the printer.
6� NEXT X
7 � END

2�� ' ' GRAPH ' '
---------- Insert the previous "GRAPH"

subroutine here.

The "GRAPH" subroutine (lines 200 through 3 1 7) is used just as it was before.
Here's how the plot looks.

..
..
..

..
..

..

THE TRS·80 POCKET COMPUTER PR.INTER 237

A graph of the function Y = LOG(X) can be made by making these changes to the
graph of Y = SIN(X) .

2 (.l FOR x = 1 T O 3 (.l
3 (.l y LOG (X)
4 (.l y = I NT (1 (.l * Y+ . 5) This line scales the numbers to

fit the printer paper.

Here is how the LOG plot looks:

-!< -!<
..

-!<
.. -!< -!<

.. -!<
-!< -!< ..

.. -!< .. -!< -!< ..
.. -!< ..

. ..

Try some functions of your own. Here are a few to start with. Each function may
need its own scaling values in line 40.

2 (.l FOR X = - 1 (.l T O 1 (.l
3 (.l y = X * X
4 (.l y = I NT (Y/ 1 (.l(.l+ . 5)

2 (.l FOR x = fol T O 2 (.l
3 l'J y EXP (-X)
4 l'J y = I NT (Y * 1 6+ . 5)

2 (.l FOR x = - 1 2 T O 1 2
3 (.l y = EXP (-X * X/ 4)
4 (.l y = I NT (Y * 1 6+ . 5)

Random Walk

By changing sections and adding sections to the previous program, a wide variety of
simulations may be made. Let's examine a program that simulates a game where a
gambler starts with five pennies. The gambler adds 1 to her to�al if the coin comes up
heads, and subtracts 1 if the coin comes up tails. The coin is simulated by generating
l 's and - 1 's randomly by the techniques of Chapter 8. The gambler's total on each
play of the game is graphed on the printer. Make these changes arid additions to the
previous program.

238 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

1 0 P R I NT I ' I NPUT A NUMBER ' I
2 0 I NPUT R This starts the random number

generator "COIN".
-------- get a random C (1 or - 1)

3 0 y = 5
4 0 GOSUB I I C O I N I I

5 0 Y = Y+C
6 0 I F Y < 1 P R I NT I I BUSTED I I : END accumulate the total (Y)
7 0 IF Y > 1 6 P R I NT I I BANK BROKEN I I : END
80 GOSUB I ' GRAPH ' I
9 0 GOTO 4 0

2 0 0 I ' GRAPH ' I

(insert the subroutine "GRAPH" here)

5 0 0 I I CO I N ' I } 5 1 0 REM GENERATE RANDOM 1 , - 1
5 2 0 R 2 2 1 * R+ 2 1 1 3
5 3 0 R = R- I NT (R/ 1 0 0 0 0) * 1 0 0 0 0
5 4 0 C = SGN (R- 5 0 0 0)
5 5 0 RETURN

add this section

If this program is RUN with the printer, the output will present a nice graph.
Here is a sample printed output. Yours will look quite different, of course, since the
numbers are chosen randomly by the program. We turned the paper 90 degrees to
present the data in a more understandable format.

p::
µi
P1
::;:
::i
z
..; •

• • • • • •
E-< • • • • • • • • • • • • • • •
::i •
0.. •
z • H •

Because of the randomness of the numbers, it is difficult to predict the final result.
Who knows if the gambler or the bank will go broke first?

Frequency Distribution

One of the most useful tools used by true lovers of statistics is the frequency distribu
tion, or histogram. Here is an example. Suppose you have a mountain of numbers. It
might be the check amounts in your check book; it might be the running times for your
favorite horses; it might be the grades in a class, or weights, or ages, or just about any
thing.

One of the most interesting and simple things that you can do is to sort the num
bers by size. Let's sort some numbers. Here they are:

82, 73 , 78, 65, 8 1 , 79, 75, 62, 76, 85, 9 1 , 78,
74, 67, 99, 56, 32, 83; 1 2

.-:-:,:,-:-="'-:---------------- ------�-- ,- -

THE TRS-80 POCKET COMPUTER PRINTER 239

Sorted into columns, the numbers look like this:

78
76
75 83

67 74 79 8 1 1 2 32 56 62 65 73 78 82 85 9 1 99
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

If you replace the numbers with asterisks, the chart looks like this:

I I I . I I I l . 1 1 1 1 1 . I J IJl:l. l.l. I 0 5 10 1 5 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

This chart is called a frequency distribution or histogram.
Histogram programs have many uses and are fairly easy to write. You can

change the "GRAPH" subroutine program to get a histogram maker. The program
takes numbers 0 through 1 00 as input. The number - 1 (when input) signals the com
puter that you have typed in all your entries and are ready to graph. The computer
then sorts the numbers by size, in intervals of length 5. Finally, it graphs the histogram
on the printer.

1)1 C LEAR
2)1 ' ' H I S TO ' '
3)1 I NPUT Z
4)1 I F Z = - 1 THEN ' ' PLOT ' '
5)1 I F Z < - 1 P R I NT ' ' WHAT? ' ' : GOTO ' ' H I STO ' '
6)1 I F Z > 1)1)1 PRINT ' ' WHAT? ' ' : GOTO ' ' H I STO ' '

7)1 REM F I ND THE BOX (W)
8)1 W = 3)1 + I NT (Z/ 5)

9)1 REM ADD 1 TO THE BOX
1)1)1 A (W) = A (W) + 1

1 1)1 REM G O GET ANOTHER Z .
1 2)1 GOTO ' ' H I STO ' '

1 3 µ ' ' PLOT ' '
1 4)1 REM S END NUMBERS TO PLOTTER
i s µ FOR Z = 3)1 TO 5)1
1 6)1 Y = A (Z)
1 7)1 GOSUB ' ' GRAPH ' '
1 8)1 NEXT Z
1 9)1 END

2 li! lil ' ' GRAPH ' '

Once again, the "GRAPi-I"
subroutine goes here.

240 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

<
<
*
<
<
<
*
<
<
<
<
*
*

You might find it instructive to use this program on the numbers in your check
book. Here are the numbers that we put in, and the frequency distribution plotted by
the program.

Inputs: 82, 73 , 78, 65,
62, 76, 85, 9 1 ,
99, 56, 32, 83,

8 1 , 79, 75,
78, 74, 67,
1 2

Frequency Distribution

Vertically Horizontally

* *
* *
* * * * * * * * * * * * v v * v v v * v v v v * * : : : : * * * v *
*
*
<

Getting the Computer Display Back

You will occasionally want to display the results of your computations on the com
puter display rather than printing the results on the printer.

Put this short program in the computer to use as an example:

1 PRINT ' ' GOOD ' ' : GOTO 1

When you run this program with the printer on, the word GOOD is repeatedly typed
by the printer. To turn the printer off and get back to the display, do this:

1 . Slide the PRINT switch to OFF.
2 . Press the computer's ON button twice. This tells the computer that the

printer's status has changed. Now the computer's output will go to the
computer's display window.

THE TRS-80 POCKET COMJ;>UTER PRINTER 241

a. RUN the program again and describe what happens.

a. The printer sits quietly. The word GOOD appears in the display window,
and the computer stops.

When you are ready to print your results again, do this:

1 . Slide the PRINT switch ON.
2. Press the computer's ON button twice.

a . . RUN the program again and describe what happens.

a. The printer roars to life and repeatedly prints the word 900D.

Using the Cassette Recorder

The TRS-80 Printer Interface can also transfer signals to the cassette recorder. The
recorder is easy to hook up to the interface. The cable that comes with the printer has
three plugs on each end. The directions are the sanie for each end of the cable (see Ap
pendix E)

1 . Black plug into the REM jack
2 . Red plug into the MIC jack
3 . Grey plug into the EAR jack

The easy way to remember this is, RED IS IN THE MIDDLE.
To use the cassette recorder with the interface:

1 . Slide the Printer Power switch to ON.
2. Slide the Printer REMOTE switch to ON.

Now the interface is ready. Take a look at Chapters 3 and 4 for a detailed discus
sion of the use of the cassette recorder with the CSA VE, CLOAD, PRINT#, and IN
PUT# commands.

242 PROJJLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Summing Up Chapter Twelve

The printer is a powerful addition to the TRS-80 Pocket Computer. It is necessary for
the computer to stop after each PRINT statement when no printer is !lttached so that
you can see the results of a program. With the printer aqdition, your program can
speed right along, printing each result as it goes. You can then keep a permanent rec
ord of results, data, and your programs. In this chapter you learned:

• how to set up the printer;
• how to LIST programs on the printer;
• how to use the PRINT comman'd to print the output of programs on the

printer;
• that the printer page holds 1 6 characters per line;
• that numbers print on the right side of the page and strings start on the left

side;
• how to make numbers print where you want them to appear on the page;
• how to print numbers and characters together; ..

·

• how to store long messages in program memory;
• that the quote mark works like a REM statement;
• how to graph functions and make histograms;
• how to transfer from printer to display and back again; and
• how to hook up the cassette recorder.

,

Conclusion

The more you use your TRS-80 Pocket Computer, the more uses you will find for it.
We hope this introduction wili 'provide you with the background necessary for efficient
use of the computer. If you have problems ':Vith it, or if you come up with some bril
liant ideas for its use, write the authors at:

DYMAX
P.O. Box 3 1 0
Menlo Park, CA 94025

APPENDIX A

BASIC Statements and Commands

Note: Expressions enclosed in square brackets, [] , are supplied by the user. [exp]
stands for a mathematical expression, [char] stands for one or more alphanu
meric characters, and [list] stands for a list of variables.

Statement General Form Function Performed

AREAD AREAD [variable] Assigns a value to a variable when
used in the DEF mode. The value
must be displayed before the execu-
ti on of the defined program.

BEEP BEEP ([exp]) Generates as many beeps as specified
by the expression in parentheses.

CHAIN CHAIN " [file name]" Reads in and executes program re-
corded on tape.

CLEAR CLEAR Clears the data memories.

CLO AD CLOAD " [file name] " Loads a program from tape.

CLO AD? CLOAD? " [file name]" Compares the program in memory
with the one just saved on tape.

CONT CONT ENTER Restarts an interrupted program at
the place where the interruption oc-
curred.

CSA VE CSA VE " [file name] " Records the program in memory onto
tape.

DEBUG DEBUG ENTER Starts instruction. Line numbers are
DEBUG [exp] ENTER ,J.isted as the program is executed.
DEBUG [char] ENTER

244 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Statement General Form Function Performed

DEGREE DEGREE Designates degrees as the unit for
specifying angula·r measure.

END END Indicates the end of a program.

FOR FOR [variable] = Begins a FOR-NEXT loop. The
[exp] TO [exp] STEP is optional and defaults to one
STEP [exp] (1) if omitted.

GOSUB GOSUB [exp] Shifts execution to the specified line
GOSUB [char] [exp] or label [char] where a sub-

routine begins.

GOTO GOTO [exp] Shifts execution to the specified line
GOTO [char] [exp] or label [char] .

'

GRAD GRAD Designates grads as the unit for spec-
if ying angular measure.

IF (See Radio Shack Based on the specified condition, a
Software Manual branch to a different part of a pro-
for numerous forms) gram is taken or not taken.

INPUT INPUT [list] Allows data to be input during pro-
gram execution for one or more vari-
ables.

INPUT# INPUT# " [filename]" Records on tape data from data
memories.

LET LET [variable] = Assigns a value to a variable.
[exp]

LET [variable]=
[char]

LIST LIST Lists the program currently in
LIST [exp] memory.
LIST [char]

MEM MEM Displays the number of program
steps and flexible memories that have
not been used.

NEW NEW Clears all program and data
memories.

NEXT NEXT [variable] Ends a FOR-NEXT loop. Incre-
ments the step.

APPENDIX A: BASIC STATEMENTS AND COMMANDS 245

Statement General Form Function Performed

PAUSE PAUSE [exp] Displays an output for approximately
PAUSE " [char]" 0.85 seconds and then continues exe-
(For other forms cution of the program.
see the Radio Shack
Software Manual.)

PRINT PRINT [exp] Displays an output and halts execu-
PRINT " [char]" tion of the program until the
(For other forms ENTER key is pressed.
see the Radio Shack
Software Manual.)

PRINT# PRINT# " [filename]" Records data memories on tape.

RADIAN RADIAN Designates radians as the unit for
specifying angular measure.

REM REM [char] Designates a nonexecutable state-
ment used to make remarks in a
program.

RETURN RETURN Returns from execution of a sub-
routine.

RUN RUN Starts the execution of a program.
RUN [exp]
RUN [char]

STEP (See FOR) Increments a FOR-NEXT loop.

STOP STOP Stops the execution of a program.
The execution may be resumed by a
CONT statement.

THEN (Used in an IF Shifts execution to a new line as
statement - see GOTO. Used only in an IF
Radio Shack Software statement.
Manual.)

USING (Many forms - see Designates the format of the display
Radio Shack Software of a PRINT or PAUSE statement.
Manual.)

APPENDIX B

Special BASIC Functions

BASIC Common Mathematical Designation
Designation or Meaning

ABS absolute value

ACS arc cos or cos- 1 or inverse cosine

ASN arc sin or sin - i or inverse sine

ATN arc tan or tan- 1 or inverse tangent

cos cos or cosine

DEG degree/minute/second conversion to decimal

DMS decimal conversion to degree/minute/second

EXP e' or exponential function or antilogarithm for LN

INT integer

LN log.X or Natural logarithm

LOG log10X or Common logarithm

SGN sign (positive or negative) or signum

SIN sin or sine

TAN tan or tangent

v' square root extraction

APPENDIX C

Acceptable Abbreviations for BASIC
Statements, Commands, and

Special Functions

Statement,
Command, o.r
Function · Acceptable Abbreviations

ABS AB.
ACS AC.
AREAD A. AR. ARE. AREA.
ASN AS.
ATN AT.
BEEP B. BE. BEE.
CHAIN CH. CHA. CHAI.
CLEAR CL. CLE. CLEA.
CLO AD CLO. CLOA.
CLO AD? CLO.? CLOA. ?
CONT c. CO. CON.
cos
CSA VE CS. CSA. CSAV.
DEBUG D. DE. DEB. DEBU.
DEG
DEGREE DEG. DEGR. DEGRE.
DMS DM.
END E. EN.
EXP EX.
FOR F. FO.
GOSUB GOS. GOSU.
GOTO G. GO. GOT.

248 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

GRAD GR. GRA.
IF
INPUT I. IN. INP.
INPUT# 1.# IN.# INP.#
iNT
LET LE.
LIST L. LI. LIS.
LN
LOG LO.
MEM M. ME.
NEW
NE)�T N. NE. NEX.
PAUSE PA. PAU.
PRINT P. PR. PRI.
PRINT# P.# PR.# PRI.#
RADIAN RA. RAD.
REM
RETURN RE. RET.
RUN R. RU.
SGN SG.
SIN SI.
STEP STE.
STOP s. ST. STO.
TAN TA.
THEN T. TH. THE.
USING u. us. USI.

INPU.
INPU.#

PAUS.
PRIN.
PRIN.#
RADI. RADIA.

RETU. RETUR.

USIN.

Error Code
Number

1

2

3

J -..� : '- '•: ,,. , , ,

APPENDIX D

Error Codes

Remarks

Caused by:

Grammatical (syntax) error - Chee�
formats used in offending lines.

Operational error - Absolute value of
some number may be greater than 1 0100
or a division by zero may have been at-
tempted.

Error in memory specification � May be
a mismatch of string and numerical vari-
ables and values assigned.

Caused by:

Line error - Check lines and labels spec-
ified by GOTO, GOSUB, RUN, DE-
BUG, or LIST statements. (The lines
may not exist.)

Caused by:

Level error - Occurs when level exceeds
four stages in a GOSUB or a FOR-
NEXT; when you try to execute a RE-
TU�N without

-
a previous GOSUB; or

when you try to execute a NEXT with-
out a previous FOR.

250 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

4 Caused by:

Insufficient memory - More program
steps may have been used than available
program memories; Mote reserve pro-
gram steps may have been used than
available reserve memories; More di-
mension memories may have been speci-
fied for the remaining memory.

5 Caused by:

Control error of cassette tape - Occurs
during the execution of tape control
statements or
commands.

6 Caused by:

Error in format - Occurs when a display
of numerical data are not in the specified
format for use in a PRINT or PAUSE
statement.

APPENDIX E

Printer Terms

Power - The printer is powered in one of two ways. A rechargeable Ni-Cad battery al
lows you to use the printer /cassette interface in places that lack normal AC
power. An AC adapter is provided and may be used to power the interface where
a wall outlet is available.

Recharging the Battery - To recharge the Ni-Cad battery, turn the printer power
switch OFF. Then connect the AC adapter to the interface and plug the other
end of the AC adapter into a wall outlet. It takes about 1 5 hours to fully re
charge the battery.

Connector Jacks

Adapter Jack - This jack is used to recharge the batteries or to operate the printer/
cassette interface from a wall outlet. (See the diagram below.)

Cassette Jacks - The cassette connection cable plugs into the printer /cassette inter
face as shown in the diagram below. The other ends of the cable are plugged into
a cassette recorder.

AC �
adapter �

plug I I

R E M M IC

0 •

' I I
black red

remote microphone
plug plug

EAR

•

� �� f2) earphone n plug

252 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

Controls and Indicators

All controls and indicators for the TRS-80 Pocket Computer printer/ cassette in
terface are located in the lower left corner on the top of the interface and are clearly
labeled.
Power Switch - This switch applies power to the interface and must be set in the ON

position when you wish to use the printer or the cassette recorder.
Print Switch - To use the printer, both the Power Switch and the Print Switch must be

in the ON positions·. In addition, the computer must be in the print mode before
the computer's PRINT and LIST commands will activate the printer. If the
Print or Power switch is OFF, the computer sends the results of PRINT and
LIST commands to the LCD display instead of the printer.

Remote Switch - This switch controls the cassette recorder when it is connected to the
interface. When the Remote switch is ON, motion of the recorder is controlled
by the computer. When it is OFF, the recorder is under the control of the recor
der's buttons.

Paper Feed Button - When the Paper Feed Button is pressed once, the printer's paper
advances one line. When the button is held down, the paper advances continu
ously. The Power switch must be on for the Paper Feed function to perform.

Low Battery Indicator - This indicator will blink when the battery becomes too weak
to operate the printer. At this time, input and output to the cassette recorder and
output to the printer are disabled.

LOW m
BATT E R Y R E MOTE P R INT POWE R

@ • ON [Q]
O F F �

ON �
O F F �

ON[Q]
O F F �

RADIO SHACK I T RS·BO I P R I N T E R
CASSETTE I N T E R FACE

I I I \ \
When l ight Paper Cassette Printer I nterface
on battery feed remote ON/O F F ON/O F F

i s low control switch switch
and needs switch
recharging

Print Mode - This mode sends PRINT and LIST results to the printer rather than the
display. To enter the print mode, first turn ON the Print and Power switches.
Then press the computer's ON key twice.

Display Mode - This mode is used to send PRINT and LIST results to the LCD dis
play. To return to the display mode after using the print mode, turn the Print
switch OFF and press the computer's ON key twice.

Computer Commands Used With the Printer

LIST - This command prints a listing of the current program in memory. The printer
must be in the print mode, and the computer in the PRO operating mode.

PRINT - This statement is used inside a program line to direct program data to the
printer rather than the LCD display. A PRINT statement followed by a single
space within quotation marks produces a paper advance of one line.

Index

absolute value 4, 5 , 68
AC adaptor 224
accuracy 1 7
AND function 135, 144
angle measurement systems 97-99
angle-side relationships 97
angular conversion 4
application examples 26
Arccos 5, 99, 1 16, 1 1 7, 121
Arcsin 5, 99, 1 21
Arctan 5 , 99, 101 , 121
AREAD statement 6, 38, 40, 46
areas o f triangles 1 1 1-1 15
arithmetic operations 4
arrays 4, 5 , 40-46, 47
BASIC commands 5 , 6, 21
BASIC functions and statements 5, 6 , 22
BASIC language 4
BASIC line 3
BASIC tape control statements 6, 62-63, 66,

68, 75, 217 , 221 , 222
battery recharge, printer 224
BEEP statement 6, 43, 46, 1 28-131 , 151
binary carry 1 38-141
binary digit 1 36-137
binary numbers 1 36-143
bit 26
break a program 20
bubble sort 21 1-212
calculator capabilities
calculator mode 100
cassette-printer interface 4
cassette recorder use 4, 61-64, 75-93
chaining a program 216-223
chain precautions 221
CHAIN statement 6, 216-217 , 221 , 222-223
charging battery, printer 224
circumference of a circle 102-104
CLEAR command 6, 77, 88
clearing an error code 13, 23

clearing program steps (see NEW)
CLOAD command 6, 62-63, 66, 68, 221
coin tossing 237.,-238
colon 8-11 , 58
compound interest 183-185
computer printer commands 221, 227
CONTinue command 6, 20
continuou$-interest 190-192
control error 60, 69
cosine 5, 97, 99, 100, 109, U O, 114, 1 16, 1 1 7,

121
CSA VE command 6, 62, 68, 75, 217, 222
cursor 2, 3 , 4, 10
cursor control 4, 54-60, 69
data files, how recorded 75-93
data memory 4, 5, 20, 27-29
DEBUG command 6, 18-19, 23
definable keys 7, 23, 47
DEFinable mode 7, 23, 47
degree 5, 6, 97, 98, 1 1 7-1 1 8, 1 22
deleting characters 3, 57, 60, 69
display 2-3, 5 , 7, 8, 9, 13 , 15 , 17, 22, 240
display mode 240
display size 2-3
down arrow key 13-14
editing functions 4, 54-60, 69
END statement 6, 1 1
ENTER key 2 , 3 , 8 , 9 , 1 2, 1 3, 23, 223, 226,

234
error codes 1 1 , 13, 23, 52-60, 69, 231
error message 11
EXP key 69 , 191-192
exponential function 4, 5
fixed memories 3, 4, 5 , 20, 22, 86, 130
flexible memories 3, 4, 20, 22, 86
FOR-NEXT loop 6, 1 8, 20, 40, 77, 1 29-1 31 ,

139 , 140, 179-180, 206, 210
frequency distribution 238-240 (see also

histogram)

25 3

254 PROBLEM-SOLVING ON THE TRS-80 POCKET COMPUTER

free memory 4-5
future value 1 94-19 8

GOSUB statement 6, 68
Grads 6, 98 , 1 22
graphing, printer 235-240

histogram 1 77-180, 239

IF-THEN statement 56, 69
INPUT prompt 14
INPUT statement 6, 30, 47
INPUT # statement 6, 76, 88
inserting characters 3 , 5 7 , 6 0, 6 9
insufficient memory error 5 6 , 60, 69
INTeger function 4 , 5, 68
interface for printer/recorder 4
interface for recorder 4
inverse trigonometric functions 4

keyboard 3 , 4 , 9
keyboard templates 4
keys 3

label 4, 43
law of cosines 110, 1 1 2, 116, 1 22
law of sines 1 1 0, 1 14 , 1 22
LET statement 6
level error 60, 69
line number 1 0 , 1 1 , 2 1 8
lines 4, 8
liquid crystal display 2
LIST command 6, 1 3 , 23
LIST command, printer 226, 234
load data from tape 76-78
load programs from tape 62-63, 21 6-223
logarithms 4, 237
logic functions 4, 5

MEM command 5 , 6, 20 , 23 , 29
memory 3, 4, 20, 22, 26-32, 40-42, 4 7
memory error 56, 60, 69
memory map 27-28
memory use 80-8 1 , 87 , 200-21 5
merging lists 2 1 3-21 5
merging programs from tape 21 6-223
MODE key 7, 8, 1 2 , 1 3 , 14, 23 , 226 , 227
modes of operation 5 , 7-20
multiplication sign 1 8

NEW command 6 , 1 6 , 2 3 , 2 1 7, 222, 233
NEWTON'S SIN 1 18-1 1 9
NOT function 1 3 5 , 144
numeric variables 4, 22, 29

ON key 20, 225, 240

operational error 56, 69
ordering numbers 202-213
OR function 1 35-136, 144

paper, printer 225
PAUSE error 60, 69
PAUSE statement 6, 14- 1 5 , 219
payment size 1 88-1 89
pi key 1 7
power key 30
power to printer 224-225
power switch, printer 224, 225
present value 1 93-19 8
printer 4
printer cassette interface 4, 24 1
printer connection jacks 24 1
printer graphing 235-240
printer interface 225
printer Jin 6
printer LIST statement 226, 234
printer paper 225
printer power 224
printer power switch 224
printer PRINT statement 227
PRINT error 60, 69
PRINT statement 6, 15, 23, 75
PRINT statement for printer 227
PRINT# statement 6, 1 2, 1 3, 85, 88
print switch 224
P RINT data to printer 227
program lines 8, 1 0, 23
programming mode 7 , 8-1 1 , 13, 14, 23, 223,

226, 227, 229, 233
program steps 5 , 20, 22, 27-29, 3 1-34, 4 7

radians 6, 97, 98, 102-104, 1 1 8, 1 22
random number generator 6 1-68, 162-182
random tests 1 64-165
ready prompt 1 2-13
recording data files on tape 80
REMark statement 6 , 233
repayment time 1 89-190
reserve memories 7, 23
RESERVE program mode 7, 23
RETURN statement 6, 60, 68
right triangles 97-1 22
RUN command 6, 1 1
RUN mode 7 , 23, 223, 226, 227

save data on tape 80
save programs on tape 6 2-6 3, 66, 68
searching for variables (time) 1 28-1 32
semicolon 5 8
shifting one line 4
shifting order of numbers 202-21 3
SHIFT key 9 , 23

sign function 4, 5
sign subroutine 1 6 7
sine 5 , 97 , 9 9 , 1 1 0-1 1 1 , 1 1 2, 1 14-1 1 5 , 1 1 8-

1 19 , 1 21 , 236-237
Software Manual 1, 6 1 , 62, 75
sorting by ennumeration 2 1 3
sorting b y exchange 2 1 1-2 1 2
sorting b y insertion 208-210
sorting by selection 2 1 2-21 3
square root 4
square wave 1 20-1 21
stock dividends 1 95
storing messages 233-234
storing numbers 200-204
string of characters 4
string symbol 4
string variables 4, 22, 29
sub-programs (subroutines) 5 2-54, 61-63,

66

subscripted variables 29
sui:face area of a cylinder 36-40
syntax error 56, 58, 69

INDEX 255

tangent 5, 97, 99, 100, 1 05 , 1 06-1 07, 109,
1 2 1

tape control statements 5 , 6
time payment 184-190
timing program 1 3 3 , 143, 1 5 1
triangles, area 1 1 1-1 1 5
trigonometric functions 4 , 96-122

USING statement 6, 44-45, 46
USING statement with printer 229, 231-

23 2

variables 40-42, 47, 58, 6 1 , 1 29-1 3 1 , 143
variables in a chained program 221
volume of a cylinder 29-40

l

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES •

NOTES

1 •

I ' ///)/,/ �)
NOTES

L

COM PUTERS

PROBLEM�SOLVI NG ON T H E TRS-SQTM

POC KET C O M P UTER

$8.95

The u lti mate i n " m i cro" com puti ng , the new TRS-80"" and SHARP
Pocket Computers are smal l enough to tuck i nto you r pocket--,.yet g ive
more sophisticated computing than the most advanced prog rammable
calcu lators.

Now, in the fi rst book ever to teach problem-solvi ng tec h n i q ues using
the Pocket Com puter, two experts show you how to solve vi rtual ly any
problem with th is extraord inari ly versati le co mput ing tool , givi ng you mastery
of a wide range of ed ucational and practical appl ications. The book's self
pa.ced format lets you learn at you r own speed -all you need is a fam i l iarity
with the BAS I C lang uage and a T RS-80r"' (or SHARP) Com puter in you r
pocket.

Fi rst, problem-posing and problem-solvi ng exercises teach you the
" n uts and bolts" of working with the Pocket Co m puter-the machi ne's
own form of BAS IC, its keyboard , and its special featu res. You ' l l then
learn how to use the Pocket Co m puter as a practical tool in many
arE'as rang ing from logic functions to stori n g , sorti ng ,
and search ing to randomization and more.

Scores of l ively, i nterest ing
problems are presented with g raded
h i nts that encou rage you to
develop you r own solutions.
L ike a l l Wi ley Self-Teaching
G u i d es, th is volume has been
careful ly designed to faci l itate
you r learn ing and i ncl udes a
wealth of i l lustrat ions and
d iag rams.

Don I nman i s an
executive with Dy max
Corporation i n Menlo Park,
Cal iforn ia. He is co-author
of the best-sel l ing g u i des
T RS-80™ BASI C and
MORE TRS-80'"' BAS I C.

Jim Conlan is a
Professor of M ath
ematics at Menlo
Col l ege in
Menlo Park.

	000capa
	002capa
	003capa
	image0000001A
	image0000001B
	image0000002A
	image0000002B
	image0000003A
	image0000003B
	image0000004A
	image0000004B
	image0000005A
	image0000005B
	image0000006A
	image0000006B
	image0000007A
	image0000007B
	image0000008A
	image0000008B
	image0000009A
	image0000009B
	image0000010A
	image0000010B
	image0000011A
	image0000011B
	image0000012A
	image0000012B
	image0000013A
	image0000013B
	image0000014A
	image0000014B
	image0000015A
	image0000015B
	image0000016A
	image0000016B
	image0000017A
	image0000017B
	image0000018A
	image0000018B
	image0000019A
	image0000019B
	image0000020A
	image0000020B
	image0000021A
	image0000021B
	image0000022A
	image0000022B
	image0000023A
	image0000023B
	image0000024A
	image0000024B
	image0000025A
	image0000025B
	image0000026A
	image0000026B
	image0000027A
	image0000027B
	image0000028A
	image0000028B
	image0000029A
	image0000029B
	image0000030A
	image0000030B
	image0000031A
	image0000031B
	image0000032A
	image0000032B
	image0000033A
	image0000033B
	image0000034A
	image0000034B
	image0000035A
	image0000035B
	image0000036A
	image0000036B
	image0000037A
	image0000037B
	image0000038A
	image0000038B
	image0000039A
	image0000039B
	image0000040A
	image0000040B
	image0000041A
	image0000041B
	image0000042A
	image0000042B
	image0000043A
	image0000043B
	image0000044A
	image0000044B
	image0000045A
	image0000045B
	image0000046A
	image0000046B
	image0000047A
	image0000047B
	image0000048A
	image0000048B
	image0000049A
	image0000049B
	image0000050A
	image0000050B
	image0000051A
	image0000051B
	image0000052A
	image0000052B
	image0000053A
	image0000053B
	image0000054A
	image0000054B
	image0000055A
	image0000055B
	image0000056A
	image0000056B
	image0000057A
	image0000057B
	image0000058A
	image0000058B
	image0000059A
	image0000059B
	image0000060A
	image0000060B
	image0000061A
	image0000061B
	image0000062A
	image0000062B
	image0000063A
	image0000063B
	image0000064A
	image0000064B
	image0000065A
	image0000065B
	image0000066A
	image0000066B
	image0000067A
	image0000067B
	image0000068A
	image0000068B
	image0000069A
	image0000069B
	image0000070A
	image0000070B
	image0000071A
	image0000071B
	image0000072A
	image0000072B
	image0000073A
	image0000073B
	image0000074A
	image0000074B
	image0000075A
	image0000075B
	image0000076A
	image0000076B
	image0000077A
	image0000077B
	image0000078A
	image0000078B
	image0000079A
	image0000079B
	image0000080A
	image0000080B
	image0000081A
	image0000081B
	image0000082A
	image0000082B
	image0000083A
	image0000083B
	image0000084A
	image0000084B
	image0000085A
	image0000085B
	image0000086A
	image0000086B
	image0000087A
	image0000087B
	image0000088A
	image0000088B
	image0000089A
	image0000089B
	image0000090A
	image0000090B
	image0000091A
	image0000091B
	image0000092A
	image0000092B
	image0000093A
	image0000093B
	image0000094A
	image0000094B
	image0000095A
	image0000095B
	image0000096A
	image0000096B
	image0000097A
	image0000097B
	image0000098A
	image0000098B
	image0000099A
	image0000099B
	image0000100A
	image0000100B
	image0000101A
	image0000101B
	image0000102A
	image0000102B
	image0000103A
	image0000103B
	image0000104A
	image0000104B
	image0000105A
	image0000105B
	image0000106A
	image0000106B
	image0000107A
	image0000107B
	image0000108A
	image0000108B
	image0000109A
	image0000109B
	image0000110A
	image0000110B
	image0000111A
	image0000111B
	image0000112A
	image0000112B
	image0000113A
	image0000113B
	image0000114A
	image0000114B
	image0000115A
	image0000115B
	image0000116A
	image0000116B
	image0000117A
	image0000117B
	image0000118A
	image0000118B
	image0000119A
	image0000119B
	image0000120A
	image0000120B
	image0000121A
	image0000121B
	image0000122A
	image0000122B
	image0000123A
	image0000123B
	image0000124A
	image0000124B
	image0000125A
	image0000125B
	image0000126A
	image0000126B
	image0000127A
	image0000127B
	image0000128A
	image0000128B
	image0000129A
	image0000129B
	image0000130A
	image0000130B
	image0000131A
	image0000131B
	image0000132A
	image0000132B
	image0000133A
	image0000133B
	image0000134A
	image0000134B
	image0000135A
	image0000135B
	zzzcapa

